File size: 3,972 Bytes
410fd66
 
 
 
 
68390a5
410fd66
 
 
68390a5
a937006
 
 
 
68390a5
 
 
 
 
 
 
 
 
 
 
 
410fd66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b3db979
 
410fd66
b3db979
 
 
410fd66
b3db979
 
 
 
410fd66
 
 
 
b3db979
410fd66
 
68390a5
 
410fd66
 
 
 
 
 
 
68390a5
 
 
 
 
 
 
 
 
 
410fd66
a937006
 
b3db979
a937006
 
 
 
410fd66
 
 
 
 
 
 
 
 
 
b3db979
410fd66
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import gradio as gr
import librosa
import numpy as np
import torch
from transformers import Wav2Vec2Processor, Wav2Vec2Model
from simple_salesforce import Salesforce
import os
from datetime import datetime

# Salesforce credentials (store securely in environment variables)
SF_USERNAME = os.getenv("SF_USERNAME", "your_salesforce_username")
SF_PASSWORD = os.getenv("SF_PASSWORD", "your_salesforce_password")
SF_SECURITY_TOKEN = os.getenv("SF_SECURITY_TOKEN", "your_salesforce_security_token")
SF_INSTANCE_URL = os.getenv("SF_INSTANCE_URL", "https://your-salesforce-instance.salesforce.com")

# Initialize Salesforce connection
try:
    sf = Salesforce(
        username=SF_USERNAME,
        password=SF_PASSWORD,
        security_token=SF_SECURITY_TOKEN,
        instance_url=SF_INSTANCE_URL
    )
except Exception as e:
    print(f"Failed to connect to Salesforce: {str(e)}")
    sf = None

# Load Wav2Vec2 model for speech feature extraction
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h")
model = Wav2Vec2Model.from_pretrained("facebook/wav2vec2-base-960h")

def analyze_voice(audio_file):
    """Analyze voice for health indicators."""
    try:
        # Load audio file
        audio, sr = librosa.load(audio_file, sr=16000)
        
        # Process audio for Wav2Vec2
        inputs = processor(audio, sampling_rate=16000, return_tensors="pt", padding=True)
        with torch.no_grad():
            outputs = model(**inputs)
        
        # Extract features (simplified for demo)
        features = outputs.last_hidden_state.mean(dim=1).numpy()
        
        # Adjusted thresholds for testing (lower to trigger feedback)
        respiratory_score = np.mean(features)  # Mock score
        mental_health_score = np.std(features)  # Mock score
        feedback = ""
        if respiratory_score > 0.1:  # Lowered from 0.5
            feedback += "Possible respiratory issue detected; consult a doctor. "
        if mental_health_score > 0.1:  # Lowered from 0.3
            feedback += "Possible stress indicators detected; consider professional advice. "
        
        if not feedback:
            feedback = "No significant health indicators detected."
        
        feedback += "\n\n**Disclaimer**: This is not a diagnostic tool. Consult a healthcare provider for medical advice."
        
        # Store in Salesforce
        if sf:
            store_in_salesforce(audio_file, feedback, respiratory_score, mental_health_score)
        
        return feedback
    except Exception as e:
        return f"Error processing audio: {str(e)}"

def store_in_salesforce(audio_file, feedback, respiratory_score, mental_health_score):
    """Store analysis results in Salesforce."""
    try:
        sf.HealthAssessment__c.create({
            "AssessmentDate__c": datetime.utcnow().isoformat(),
            "Feedback__c": feedback,
            "RespiratoryScore__c": float(respiratory_score),
            "MentalHealthScore__c": float(mental_health_score),
            "AudioFileName__c": os.path.basename(audio_file)
        })
    except Exception as e:
        print(f"Failed to store in Salesforce: {str(e)}")

def test_with_sample_audio():
    """Test the app with a sample audio file."""
    sample_audio_path = "audio_samples/sample.wav"  # Or "audio_samples/common_voice_sample.wav"
    if os.path.exists(sample_audio_path):
        return analyze_voice(sample_audio_path)
    return "Sample audio file not found."

# Gradio interface
iface = gr.Interface(
    fn=analyze_voice,
    inputs=gr.Audio(type="filepath", label="Record or Upload Voice"),
    outputs=gr.Textbox(label="Health Assessment Feedback"),
    title="Health Voice Analyzer",
    description="Record or upload a voice sample for preliminary health assessment. Supports English, Spanish, Hindi, Mandarin."
)

if __name__ == "__main__":
    print(test_with_sample_audio())  # Run test on startup
    iface.launch(server_name="0.0.0.0", server_port=7860)