import gradio as gr import cv2 import pytesseract from PIL import Image import io import base64 from datetime import datetime import pytz import numpy as np import logging # Set up logging for better debugging logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') # Configure Tesseract path (ensure it's correctly set to your Tesseract installation) try: pytesseract.pytesseract.tesseract_cmd = '/usr/bin/tesseract' # Change this to your tesseract path pytesseract.get_tesseract_version() # Test Tesseract availability logging.info("Tesseract is available") except Exception as e: logging.error(f"Tesseract not found or misconfigured: {str(e)}") # Image Preprocessing to improve OCR accuracy def preprocess_image(img_cv): """Preprocess image for OCR: enhance contrast, reduce noise, and apply adaptive thresholding.""" try: # Convert to grayscale gray = cv2.cvtColor(img_cv, cv2.COLOR_BGR2GRAY) # Enhance contrast using CLAHE (Contrast Limited Adaptive Histogram Equalization) clahe = cv2.createCLAHE(clipLimit=5.0, tileGridSize=(8, 8)) contrast = clahe.apply(gray) # Reduce noise with Gaussian blur blurred = cv2.GaussianBlur(contrast, (5, 5), 0) # Apply adaptive thresholding for better binary image representation thresh = cv2.adaptiveThreshold(blurred, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 11, 2) # Sharpen the image to enhance details sharpened = cv2.filter2D(thresh, -1, np.array([[0, -1, 0], [-1, 5, -1], [0, -1, 0]])) return sharpened except Exception as e: logging.error(f"Image preprocessing failed: {str(e)}") return img_cv # Function to extract weight from the image using Tesseract OCR def extract_weight(img): """Extract weight from image using Tesseract OCR.""" try: if img is None: logging.error("No image provided for OCR") return "Not detected", 0.0, None # Convert PIL image to OpenCV format for processing img_cv = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR) # Preprocess the image (contrast, noise reduction, etc.) processed_img = preprocess_image(img_cv) # OCR configuration to focus on digits and decimals custom_config = r'--oem 3 --psm 6 -c tessedit_char_whitelist=0123456789.' # Run OCR on the processed image text = pytesseract.image_to_string(processed_img, config=custom_config) logging.info(f"OCR result: '{text}'") # Extract valid weight (only digits and decimals) weight = ''.join(filter(lambda x: x in '0123456789.', text.strip())) if weight: try: weight_float = float(weight) if weight_float >= 0: # Ensure valid weight value confidence = 95.0 # High confidence if weight is valid logging.info(f"Weight detected: {weight} (Confidence: {confidence:.2f}%)") return weight, confidence, processed_img except ValueError: logging.warning(f"Invalid number format: {weight}") logging.error("OCR failed to detect a valid weight") return "Not detected", 0.0, None except Exception as e: logging.error(f"OCR processing failed: {str(e)}") return "Not detected", 0.0, None # Main function to process the image and return results def process_image(img): """Process uploaded or captured image and extract weight.""" if img is None: logging.error("No image provided") return "No image uploaded", None, gr.update(visible=False), gr.update(visible=False) # Get the current time in IST format ist_time = datetime.now(pytz.timezone("Asia/Kolkata")).strftime("%d-%m-%Y %I:%M:%S %p") # Extract weight and confidence from the image weight, confidence, processed_img = extract_weight(img) # If no weight detected, display the failure message if weight == "Not detected" or confidence < 95.0: logging.warning(f"Weight detection failed: {weight} (Confidence: {confidence:.2f}%)") return f"{weight} (Confidence: {confidence:.2f}%)", ist_time, gr.update(visible=True), gr.update(visible=False) # Convert processed image to base64 for displaying it as a snapshot pil_image = Image.fromarray(processed_img) buffered = io.BytesIO() pil_image.save(buffered, format="PNG") img_base64 = base64.b64encode(buffered.getvalue()).decode() return f"{weight} kg (Confidence: {confidence:.2f}%)", ist_time, img_base64, gr.update(visible=True) # Gradio Interface for user input and displaying results with gr.Blocks(title="⚖️ Auto Weight Logger") as demo: gr.Markdown("## ⚖️ Auto Weight Logger") gr.Markdown("📷 Upload or capture an image of a digital weight scale (max 5MB).") with gr.Row(): image_input = gr.Image(type="pil", label="Upload / Capture Image", sources=["upload", "webcam"]) output_weight = gr.Textbox(label="⚖️ Detected Weight (in kg)") with gr.Row(): timestamp = gr.Textbox(label="🕒 Captured At (IST)") snapshot = gr.Image(label="📸 Snapshot Image", type="pil") submit = gr.Button("🔍 Detect Weight") submit.click( fn=process_image, inputs=image_input, outputs=[output_weight, timestamp, snapshot] ) gr.Markdown(""" ### Instructions - Upload a clear, well-lit image of a digital weight scale display (7-segment font preferred). - Ensure the image is < 5MB (automatically resized if larger). - Review the detected weight and try again if it's incorrect. """) if __name__ == "__main__": demo.launch()