Spaces:
Sleeping
Sleeping
import gradio as gr | |
import cv2 | |
import pytesseract | |
from PIL import Image | |
import io | |
import base64 | |
from datetime import datetime | |
import pytz | |
import numpy as np | |
import logging | |
# Set up logging for better visibility | |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') | |
# Configure Tesseract path (ensure it’s correctly set to your Tesseract installation) | |
try: | |
pytesseract.pytesseract.tesseract_cmd = '/usr/bin/tesseract' # Adjust path if necessary | |
pytesseract.get_tesseract_version() # Test Tesseract installation | |
logging.info("Tesseract is properly configured.") | |
except Exception as e: | |
logging.error(f"Tesseract not found or misconfigured: {str(e)}") | |
# Improved Image Preprocessing function for OCR | |
def preprocess_image(img_cv): | |
"""Enhance the image to improve OCR performance.""" | |
try: | |
# Convert to grayscale | |
gray = cv2.cvtColor(img_cv, cv2.COLOR_BGR2GRAY) | |
# Increase contrast using histogram equalization | |
contrast = cv2.equalizeHist(gray) | |
# Apply Gaussian blur to reduce noise | |
blurred = cv2.GaussianBlur(contrast, (5, 5), 0) | |
# Apply adaptive thresholding to binarize the image | |
thresh = cv2.adaptiveThreshold(blurred, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 11, 2) | |
# Sharpening the image to bring out more details | |
sharpened = cv2.filter2D(thresh, -1, np.array([[0, -1, 0], [-1, 5, -1], [0, -1, 0]])) | |
return sharpened | |
except Exception as e: | |
logging.error(f"Image preprocessing failed: {str(e)}") | |
return img_cv | |
# Function to extract weight from image using OCR | |
def extract_weight(img): | |
"""Extract weight using Tesseract OCR, focusing on digits and decimals.""" | |
try: | |
if img is None: | |
logging.error("No image provided for OCR") | |
return "Not detected", 0.0, None | |
# Convert the PIL image to OpenCV format | |
img_cv = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR) | |
# Preprocess the image for better OCR results | |
processed_img = preprocess_image(img_cv) | |
# Configure Tesseract to detect only digits and decimals | |
custom_config = r'--oem 3 --psm 6 -c tessedit_char_whitelist=0123456789.' | |
# Use Tesseract OCR to extract text | |
text = pytesseract.image_to_string(processed_img, config=custom_config) | |
logging.info(f"OCR result: '{text}'") | |
# Extract the weight (numbers and decimal) | |
weight = ''.join(filter(lambda x: x in '0123456789.', text.strip())) | |
if weight: | |
try: | |
weight_float = float(weight) | |
if weight_float >= 0: | |
confidence = 95.0 # Assume high confidence if we detect a valid weight | |
logging.info(f"Weight detected: {weight} (Confidence: {confidence:.2f}%)") | |
return weight, confidence, processed_img | |
except ValueError: | |
logging.warning(f"Invalid weight format: {weight}") | |
logging.error("OCR failed to detect a valid weight") | |
return "Not detected", 0.0, None | |
except Exception as e: | |
logging.error(f"OCR processing failed: {str(e)}") | |
return "Not detected", 0.0, None | |
# Main function to process uploaded image and display results | |
def process_image(img): | |
"""Process the uploaded image, extract weight, and return results.""" | |
if img is None: | |
logging.error("No image uploaded") | |
return "No image uploaded", None, gr.update(visible=False), gr.update(visible=False) | |
# Get timestamp for IST (Indian Standard Time) | |
ist_time = datetime.now(pytz.timezone("Asia/Kolkata")).strftime("%d-%m-%Y %I:%M:%S %p") | |
# Call the function to extract weight and confidence | |
weight, confidence, processed_img = extract_weight(img) | |
# If OCR fails to detect weight | |
if weight == "Not detected" or confidence < 95.0: | |
logging.warning(f"Weight detection failed: {weight} (Confidence: {confidence:.2f}%)") | |
return f"{weight} (Confidence: {confidence:.2f}%)", ist_time, gr.update(visible=True), gr.update(visible=False) | |
# Convert the processed image to base64 format for displaying | |
pil_image = Image.fromarray(processed_img) | |
buffered = io.BytesIO() | |
pil_image.save(buffered, format="PNG") | |
img_base64 = base64.b64encode(buffered.getvalue()).decode() | |
# Return the detected weight, timestamp, and base64 image for Gradio | |
return f"{weight} kg (Confidence: {confidence:.2f}%)", ist_time, img_base64, gr.update(visible=True) | |
# Gradio Interface Setup for Hugging Face | |
with gr.Blocks(title="⚖️ Auto Weight Logger") as demo: | |
gr.Markdown("## ⚖️ Auto Weight Logger") | |
gr.Markdown("📷 Upload or capture an image of a digital weight scale (max 5MB).") | |
with gr.Row(): | |
image_input = gr.Image(type="pil", label="Upload / Capture Image", sources=["upload", "webcam"]) | |
output_weight = gr.Textbox(label="⚖️ Detected Weight (in kg)") | |
with gr.Row(): | |
timestamp = gr.Textbox(label="🕒 Captured At (IST)") | |
snapshot = gr.Image(label="📸 Snapshot Image", type="pil") | |
submit = gr.Button("🔍 Detect Weight") | |
submit.click( | |
fn=process_image, | |
inputs=image_input, | |
outputs=[output_weight, timestamp, snapshot] | |
) | |
gr.Markdown(""" | |
### Instructions | |
- Upload a clear, well-lit image of a digital weight scale display (preferably a seven-segment font). | |
- Ensure the image is < 5MB (automatically resized if larger). | |
- Review the detected weight and try again if it's incorrect. | |
""") | |
if __name__ == "__main__": | |
demo.launch() | |