geethareddy's picture
Update app.py
808ff7b verified
raw
history blame
5.48 kB
import gradio as gr
import cv2
import pytesseract
from PIL import Image
import io
import base64
from datetime import datetime
import pytz
import numpy as np
import logging
# Set up logging for better visibility
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
# Configure Tesseract path (ensure itโ€™s correctly set to your Tesseract installation)
try:
pytesseract.pytesseract.tesseract_cmd = '/usr/bin/tesseract' # Change path if necessary
pytesseract.get_tesseract_version() # Confirm Tesseract is properly set
logging.info("Tesseract is configured properly.")
except Exception as e:
logging.error(f"Tesseract not found or misconfigured: {str(e)}")
# Improved Image Preprocessing function
def preprocess_image(img_cv):
"""Enhance the image to improve OCR performance."""
try:
# Convert to grayscale
gray = cv2.cvtColor(img_cv, cv2.COLOR_BGR2GRAY)
# Increase contrast
contrast = cv2.equalizeHist(gray)
# Apply Gaussian blur to reduce noise
blurred = cv2.GaussianBlur(contrast, (5, 5), 0)
# Adaptive thresholding for binarization
thresh = cv2.adaptiveThreshold(blurred, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 11, 2)
# Sharpening the image
sharpened = cv2.filter2D(thresh, -1, np.array([[0, -1, 0], [-1, 5, -1], [0, -1, 0]]))
return sharpened
except Exception as e:
logging.error(f"Image preprocessing failed: {str(e)}")
return img_cv
# Function to extract weight using OCR
def extract_weight(img):
"""Extract weight using Tesseract OCR, focusing on digits and decimals."""
try:
if img is None:
logging.error("No image provided for OCR")
return "Not detected", 0.0, None
img_cv = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
processed_img = preprocess_image(img_cv)
# Show processed image for debugging
debug_img = Image.fromarray(processed_img)
debug_img.show()
# Tesseract configuration to extract digits and decimals
custom_config = r'--oem 3 --psm 6 -c tessedit_char_whitelist=0123456789.'
text = pytesseract.image_to_string(processed_img, config=custom_config)
logging.info(f"OCR result: '{text}'")
weight = ''.join(filter(lambda x: x in '0123456789.', text.strip()))
if weight:
try:
weight_float = float(weight)
if weight_float >= 0:
confidence = 95.0 # High confidence
logging.info(f"Weight detected: {weight} (Confidence: {confidence:.2f}%)")
return weight, confidence, processed_img
except ValueError:
logging.warning(f"Invalid weight format: {weight}")
logging.error("OCR failed to detect a valid weight")
return "Not detected", 0.0, None
except Exception as e:
logging.error(f"OCR processing failed: {str(e)}")
return "Not detected", 0.0, None
# Main function to process uploaded image and display results
def process_image(img):
"""Process the uploaded image, extract weight, and display results."""
if img is None:
logging.error("No image uploaded")
return "No image uploaded", None, gr.update(visible=False), gr.update(visible=False)
# Get the timestamp for IST (Indian Standard Time)
ist_time = datetime.now(pytz.timezone("Asia/Kolkata")).strftime("%d-%m-%Y %I:%M:%S %p")
weight, confidence, processed_img = extract_weight(img)
# If detection failed
if weight == "Not detected" or confidence < 95.0:
logging.warning(f"Weight detection failed: {weight} (Confidence: {confidence:.2f}%)")
return f"{weight} (Confidence: {confidence:.2f}%)", ist_time, gr.update(visible=True), gr.update(visible=False)
# Convert processed image to base64 for displaying in Gradio
pil_image = Image.fromarray(processed_img)
buffered = io.BytesIO()
pil_image.save(buffered, format="PNG")
img_base64 = base64.b64encode(buffered.getvalue()).decode()
# Return the detected weight and processed image for Gradio
return f"{weight} kg (Confidence: {confidence:.2f}%)", ist_time, img_base64, gr.update(visible=True)
# Gradio Interface Setup for Hugging Face
with gr.Blocks(title="โš–๏ธ Auto Weight Logger") as demo:
gr.Markdown("## โš–๏ธ Auto Weight Logger")
gr.Markdown("๐Ÿ“ท Upload or capture an image of a digital weight scale (max 5MB).")
with gr.Row():
image_input = gr.Image(type="pil", label="Upload / Capture Image", sources=["upload", "webcam"])
output_weight = gr.Textbox(label="โš–๏ธ Detected Weight (in kg)")
with gr.Row():
timestamp = gr.Textbox(label="๐Ÿ•’ Captured At (IST)")
snapshot = gr.Image(label="๐Ÿ“ธ Snapshot Image", type="pil")
submit = gr.Button("๐Ÿ” Detect Weight")
submit.click(
fn=process_image,
inputs=image_input,
outputs=[output_weight, timestamp, snapshot]
)
gr.Markdown("""
### Instructions
- Upload a clear, well-lit image of a digital weight scale display (preferably a seven-segment font).
- Ensure the image is < 5MB (automatically resized if larger).
- Review the detected weight and try again if it's incorrect.
""")
if __name__ == "__main__":
demo.launch()