Spaces:
Sleeping
Sleeping
| import easyocr | |
| import numpy as np | |
| import cv2 | |
| import re | |
| import logging | |
| from datetime import datetime | |
| import os | |
| # Set up logging for debugging | |
| logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') | |
| # Initialize EasyOCR | |
| # Consider using 'en' and potentially 'ch_sim' or other relevant languages if your scales have non-English characters. | |
| # gpu=True can speed up processing if a compatible GPU is available. | |
| easyocr_reader = easyocr.Reader(['en'], gpu=False) | |
| # Directory for debug images | |
| DEBUG_DIR = "debug_images" | |
| os.makedirs(DEBUG_DIR, exist_ok=True) | |
| def save_debug_image(img, filename_suffix, prefix=""): | |
| """Saves an image to the debug directory with a timestamp.""" | |
| timestamp = datetime.now().strftime("%Y%m%d_%H%M%S_%f") | |
| filename = os.path.join(DEBUG_DIR, f"{prefix}{timestamp}_{filename_suffix}.png") | |
| if len(img.shape) == 3: # Color image | |
| cv2.imwrite(filename, img) | |
| else: # Grayscale image | |
| cv2.imwrite(filename, img) | |
| logging.info(f"Saved debug image: {filename}") | |
| def estimate_brightness(img): | |
| """Estimate image brightness to detect illuminated displays""" | |
| gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) | |
| return np.mean(gray) | |
| def detect_roi(img): | |
| """Detect and crop the region of interest (likely the digital display)""" | |
| try: | |
| save_debug_image(img, "01_original") | |
| gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) | |
| save_debug_image(gray, "02_grayscale") | |
| brightness = estimate_brightness(img) | |
| # Adaptive thresholding based on brightness | |
| # For darker images, a lower threshold might be needed. | |
| # For very bright images, a higher threshold. | |
| # Tuned thresholds based on observed values | |
| if brightness > 180: | |
| thresh_value = 230 | |
| elif brightness > 100: | |
| thresh_value = 190 | |
| else: | |
| thresh_value = 150 # Even lower for very dark images | |
| _, thresh = cv2.threshold(gray, thresh_value, 255, cv2.THRESH_BINARY) | |
| save_debug_image(thresh, f"03_roi_threshold_{thresh_value}") | |
| # Increased kernel size for dilation to better connect segments of digits | |
| # This helps in forming a solid contour for the display | |
| kernel = np.ones((13, 13), np.uint8) # Slightly larger kernel | |
| dilated = cv2.dilate(thresh, kernel, iterations=5) # Increased iterations for stronger connection | |
| save_debug_image(dilated, "04_roi_dilated") | |
| contours, _ = cv2.findContours(dilated, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) | |
| if contours: | |
| # Filter contours by a more robust area range and shape | |
| img_area = img.shape[0] * img.shape[1] | |
| valid_contours = [] | |
| for c in contours: | |
| area = cv2.contourArea(c) | |
| # Filter out very small and very large contours (e.g., entire image, or noise) | |
| if 1500 < area < (img_area * 0.9): # Increased min area, max area | |
| x, y, w, h = cv2.boundingRect(c) | |
| aspect_ratio = w / h | |
| # Check for typical display aspect ratios and minimum size | |
| if 2.0 <= aspect_ratio <= 5.5 and w > 100 and h > 50: # Adjusted aspect ratio and min size | |
| valid_contours.append(c) | |
| if valid_contours: | |
| # Sort by area descending and iterate | |
| for contour in sorted(valid_contours, key=cv2.contourArea, reverse=True): | |
| x, y, w, h = cv2.boundingRect(contour) | |
| # Expand ROI to ensure full digits are captured and a small border | |
| padding = 40 # Increased padding | |
| x, y = max(0, x - padding), max(0, y - padding) | |
| w, h = min(w + 2 * padding, img.shape[1] - x), min(h + 2 * padding, img.shape[0] - y) | |
| roi_img = img[y:y+h, x:x+w] | |
| save_debug_image(roi_img, "05_detected_roi") | |
| logging.info(f"Detected ROI with dimensions: ({x}, {y}, {w}, {h})") | |
| return roi_img, (x, y, w, h) | |
| logging.info("No suitable ROI found, returning original image for full image OCR attempt.") | |
| save_debug_image(img, "05_no_roi_original_fallback") | |
| return img, None | |
| except Exception as e: | |
| logging.error(f"ROI detection failed: {str(e)}") | |
| save_debug_image(img, "05_roi_detection_error_fallback") | |
| return img, None | |
| def detect_segments(digit_img): | |
| """Detect seven-segment patterns in a digit image""" | |
| h, w = digit_img.shape | |
| if h < 15 or w < 10: # Increased minimum dimensions for a digit | |
| return None | |
| # Define segment regions (top, middle, bottom, left-top, left-bottom, right-top, right-bottom) | |
| # Adjusted segment proportions for better robustness, more aggressive cropping | |
| segments = { | |
| 'top': (int(w*0.15), int(w*0.85), 0, int(h*0.2)), | |
| 'middle': (int(w*0.15), int(w*0.85), int(h*0.4), int(h*0.6)), | |
| 'bottom': (int(w*0.15), int(w*0.85), int(h*0.8), h), | |
| 'left_top': (0, int(w*0.25), int(h*0.05), int(h*0.5)), | |
| 'left_bottom': (0, int(w*0.25), int(h*0.5), int(h*0.95)), | |
| 'right_top': (int(w*0.75), w, int(h*0.05), int(h*0.5)), | |
| 'right_bottom': (int(w*0.75), w, int(h*0.5), int(h*0.95)) | |
| } | |
| segment_presence = {} | |
| for name, (x1, x2, y1, y2) in segments.items(): | |
| # Ensure coordinates are within bounds | |
| x1, y1 = max(0, x1), max(0, y1) | |
| x2, y2 = min(w, x2), min(h, y2) | |
| region = digit_img[y1:y2, x1:x2] | |
| if region.size == 0: | |
| segment_presence[name] = False | |
| continue | |
| # Count white pixels in the region | |
| pixel_count = np.sum(region == 255) | |
| total_pixels = region.size | |
| # Segment is present if a significant portion of the region is white | |
| # Adjusted threshold for segment presence - higher for robustness | |
| segment_presence[name] = pixel_count / total_pixels > 0.55 # Increased sensitivity further | |
| # Seven-segment digit patterns - remain the same | |
| digit_patterns = { | |
| '0': ('top', 'bottom', 'left_top', 'left_bottom', 'right_top', 'right_bottom'), | |
| '1': ('right_top', 'right_bottom'), | |
| '2': ('top', 'middle', 'bottom', 'left_bottom', 'right_top'), | |
| '3': ('top', 'middle', 'bottom', 'right_top', 'right_bottom'), | |
| '4': ('middle', 'left_top', 'right_top', 'right_bottom'), | |
| '5': ('top', 'middle', 'bottom', 'left_top', 'right_bottom'), | |
| '6': ('top', 'middle', 'bottom', 'left_top', 'left_bottom', 'right_bottom'), | |
| '7': ('top', 'right_top', 'right_bottom'), | |
| '8': ('top', 'middle', 'bottom', 'left_top', 'left_bottom', 'right_top', 'right_bottom'), | |
| '9': ('top', 'middle', 'bottom', 'left_top', 'right_top', 'right_bottom') | |
| } | |
| best_match = None | |
| max_score = -1 # Initialize with a lower value | |
| for digit, pattern in digit_patterns.items(): | |
| matches = sum(1 for segment in pattern if segment_presence.get(segment, False)) | |
| # Penalize for segments that should NOT be present but are | |
| non_matches_penalty = sum(1 for segment in segment_presence if segment not in pattern and segment_presence[segment]) | |
| # Prioritize digits with more matched segments and fewer incorrect segments | |
| current_score = matches - non_matches_penalty | |
| # Add a small bonus for matching exactly all required segments for the digit | |
| if all(segment_presence.get(s, False) for s in pattern): | |
| current_score += 0.5 | |
| if current_score > max_score: | |
| max_score = current_score | |
| best_match = digit | |
| elif current_score == max_score and best_match is not None: | |
| # Tie-breaking: prefer digits with fewer "extra" segments when scores are equal | |
| current_digit_non_matches = sum(1 for segment in segment_presence if segment not in pattern and segment_presence[segment]) | |
| best_digit_pattern = digit_patterns[best_match] | |
| best_digit_non_matches = sum(1 for segment in segment_presence if segment not in best_digit_pattern and segment_presence[best_digit_pattern]) # Corrected logic | |
| if current_digit_non_matches < best_digit_non_matches: | |
| best_match = digit | |
| # Debugging segment presence | |
| # logging.debug(f"Digit Image Shape: {digit_img.shape}, Segments: {segment_presence}, Best Match: {best_match}") | |
| # save_debug_image(digit_img, f"digit_segment_debug_{best_match or 'none'}", prefix="10_") | |
| return best_match | |
| def custom_seven_segment_ocr(img, roi_bbox): | |
| """Perform custom OCR for seven-segment displays""" | |
| try: | |
| gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) | |
| # Adaptive thresholding for digits within ROI | |
| # Using OTSU for automatic thresholding or a fixed value depending on brightness | |
| brightness = estimate_brightness(img) | |
| if brightness > 150: | |
| _, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) | |
| else: | |
| _, thresh = cv2.threshold(gray, 100, 255, cv2.THRESH_BINARY) # Lower threshold for darker displays | |
| save_debug_image(thresh, "06_roi_thresh_for_digits") | |
| # Use EasyOCR to get bounding boxes for digits | |
| # Increased text_threshold for more confident digit detection | |
| # Adjusted mag_ratio for better handling of digit sizes | |
| # Added y_ths to reduce sensitivity to vertical position variations (common in scales) | |
| results = easyocr_reader.readtext(thresh, detail=1, paragraph=False, | |
| contrast_ths=0.2, adjust_contrast=0.8, # Slightly more contrast adjustment | |
| text_threshold=0.85, mag_ratio=1.5, # Adjusted mag_ratio back, seems to work better for 7-seg | |
| allowlist='0123456789.', y_ths=0.2) # Increased y_ths for row grouping tolerance | |
| if not results: | |
| logging.info("EasyOCR found no digits for custom seven-segment OCR.") | |
| return None | |
| # Sort bounding boxes left to right | |
| digits_info = [] | |
| for (bbox, text, conf) in results: | |
| # Ensure the text found by EasyOCR is a single digit or a decimal point | |
| # Also filter by a minimum height of the bounding box for robustness | |
| (x1, y1), (x2, y2), (x3, y3), (x4, y4) = bbox | |
| h_bbox = max(y1,y2,y3,y4) - min(y1,y2,y3,y4) | |
| if len(text) == 1 and (text.isdigit() or text == '.') and h_bbox > 10: # Min height for bbox | |
| x_min, x_max = int(min(x1, x4)), int(max(x2, x3)) | |
| y_min, y_max = int(min(y1, y2)), int(max(y3, y4)) | |
| digits_info.append((x_min, x_max, y_min, y_max, text, conf)) | |
| # Sort by x_min (left to right) | |
| digits_info.sort(key=lambda x: x[0]) | |
| recognized_text = "" | |
| for idx, (x_min, x_max, y_min, y_max, easyocr_char, easyocr_conf) in enumerate(digits_info): | |
| x_min, y_min = max(0, x_min), max(0, y_min) | |
| x_max, y_max = min(thresh.shape[1], x_max), min(thresh.shape[0], y_max) | |
| if x_max <= x_min or y_max <= y_min: | |
| continue | |
| digit_img_crop = thresh[y_min:y_max, x_min:x_max] | |
| save_debug_image(digit_img_crop, f"07_digit_crop_{idx}_{easyocr_char}") | |
| # If EasyOCR is very confident about a digit or it's a decimal, use its result directly | |
| # Or if the digit crop is too small for reliable segment detection | |
| if easyocr_conf > 0.9 or easyocr_char == '.' or digit_img_crop.shape[0] < 20 or digit_img_crop.shape[1] < 15: # Lowered confidence for direct use | |
| recognized_text += easyocr_char | |
| else: | |
| # Otherwise, try the segment detection | |
| digit_from_segments = detect_segments(digit_img_crop) | |
| if digit_from_segments: | |
| recognized_text += digit_from_segments | |
| else: | |
| # If segment detection also fails, fall back to EasyOCR's less confident result | |
| recognized_text += easyocr_char | |
| # Validate the recognized text | |
| text = recognized_text | |
| text = re.sub(r"[^\d\.]", "", text) # Remove any non-digit/non-dot characters | |
| # Ensure there's at most one decimal point | |
| if text.count('.') > 1: | |
| text = text.replace('.', '', text.count('.') - 1) # Remove extra decimal points | |
| # Basic validation for common weight formats (e.g., 75.5, 120.0, 5.0) | |
| # Allow numbers to start with . (e.g., .5 -> 0.5) if it's the only character | |
| if text and re.fullmatch(r"^\d*\.?\d*$", text) and len(text.replace('.', '')) > 0: | |
| # Handle cases like ".5" -> "0.5" | |
| if text.startswith('.') and len(text) > 1: | |
| text = "0" + text | |
| # Handle cases like "5." -> "5" | |
| if text.endswith('.') and len(text) > 1: | |
| text = text.rstrip('.') | |
| # Ensure it's not just a single dot or empty after processing | |
| if text == '.' or text == '': | |
| return None | |
| return text | |
| logging.info(f"Custom OCR final text '{recognized_text}' failed validation.") | |
| return None | |
| except Exception as e: | |
| logging.error(f"Custom seven-segment OCR failed: {str(e)}") | |
| return None | |
| def extract_weight_from_image(pil_img): | |
| try: | |
| img = np.array(pil_img) | |
| img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) | |
| brightness = estimate_brightness(img) | |
| # Adjust confidence threshold more dynamically | |
| conf_threshold = 0.9 if brightness > 150 else (0.8 if brightness > 80 else 0.7) # Adjusted thresholds | |
| # Detect ROI | |
| roi_img, roi_bbox = detect_roi(img) | |
| # Try custom seven-segment OCR first | |
| custom_result = custom_seven_segment_ocr(roi_img, roi_bbox) | |
| if custom_result: | |
| # Format the custom result: remove leading zeros (unless it's "0" or "0.x") and trailing zeros after decimal | |
| if "." in custom_result: | |
| int_part, dec_part = custom_result.split(".") | |
| int_part = int_part.lstrip("0") or "0" | |
| dec_part = dec_part.rstrip('0') | |
| if not dec_part and int_part != "0": # If decimal part is empty (e.g., "50."), remove the dot | |
| custom_result = int_part | |
| elif not dec_part and int_part == "0": # if it's "0." keep it as "0" | |
| custom_result = "0" | |
| else: | |
| custom_result = f"{int_part}.{dec_part}" | |
| else: | |
| custom_result = custom_result.lstrip('0') or "0" | |
| # Additional validation for custom result to ensure it's a valid number | |
| try: | |
| float(custom_result) | |
| logging.info(f"Custom OCR result: {custom_result}, Confidence: 100.0%") | |
| return custom_result, 100.0 # High confidence for custom OCR | |
| except ValueError: | |
| logging.warning(f"Custom OCR result '{custom_result}' is not a valid number, falling back.") | |
| custom_result = None # Force fallback | |
| # Fallback to EasyOCR if custom OCR fails | |
| logging.info("Custom OCR failed or invalid, falling back to general EasyOCR.") | |
| # Apply more aggressive image processing for EasyOCR if custom OCR failed | |
| processed_roi_img_gray = cv2.cvtColor(roi_img, cv2.COLOR_BGR2GRAY) | |
| # Sharpening | |
| kernel_sharpening = np.array([[-1,-1,-1], | |
| [-1,9,-1], | |
| [-1,-1,-1]]) | |
| sharpened_roi = cv2.filter2D(processed_roi_img_gray, -1, kernel_sharpening) | |
| save_debug_image(sharpened_roi, "08_fallback_sharpened") | |
| # Apply adaptive thresholding to the sharpened image for better digit isolation | |
| # Block size and C constant can be critical | |
| processed_roi_img_final = cv2.adaptiveThreshold(sharpened_roi, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, | |
| cv2.THRESH_BINARY, 15, 3) # Adjusted block size and C | |
| save_debug_image(processed_roi_img_final, "09_fallback_adaptive_thresh") | |
| # EasyOCR parameters for general text | |
| # Adjusted parameters for better digit recognition | |
| # added batch_size for potentially better performance on multiple texts | |
| results = easyocr_reader.readtext(processed_roi_img_final, detail=1, paragraph=False, | |
| contrast_ths=0.3, adjust_contrast=0.9, | |
| text_threshold=0.6, mag_ratio=1.8, # Lowered text_threshold, increased mag_ratio | |
| allowlist='0123456789.', batch_size=4, y_ths=0.3) # Increased y_ths | |
| best_weight = None | |
| best_conf = 0.0 | |
| best_score = 0.0 | |
| for (bbox, text, conf) in results: | |
| text = text.lower().strip() | |
| # More robust character replacements | |
| text = text.replace(",", ".").replace(";", ".").replace(":", ".").replace(" ", "") # Remove spaces | |
| text = text.replace("o", "0").replace("O", "0").replace("q", "0").replace("Q", "0") | |
| text = text.replace("s", "5").replace("S", "5") | |
| text = text.replace("g", "9").replace("G", "6") | |
| text = text.replace("l", "1").replace("I", "1").replace("|", "1") | |
| text = text.replace("b", "8").replace("B", "8") | |
| text = text.replace("z", "2").replace("Z", "2") | |
| text = text.replace("a", "4").replace("A", "4") | |
| text = text.replace("e", "3") | |
| text = text.replace("t", "7") # 't' can look like '7' | |
| text = text.replace("~", "") # Common noise | |
| text = text.replace("`", "") | |
| # Remove common weight units and other non-numeric characters | |
| text = re.sub(r"(kgs|kg|k|lb|g|gr|pounds|lbs)\b", "", text) # Added lbs | |
| text = re.sub(r"[^\d\.]", "", text) | |
| # Handle multiple decimal points (keep only the first one) | |
| if text.count('.') > 1: | |
| parts = text.split('.') | |
| text = parts[0] + '.' + ''.join(parts[1:]) | |
| # Clean up leading/trailing dots if any | |
| text = text.strip('.') | |
| # Validate the final text format | |
| # Allow optional leading zero, and optional decimal with up to 3 places | |
| if re.fullmatch(r"^\d*\.?\d{0,3}$", text) and len(text.replace('.', '')) > 0: # Ensure at least one digit | |
| try: | |
| weight = float(text) | |
| # Refined scoring for weights within a reasonable range | |
| range_score = 1.0 | |
| if 0.1 <= weight <= 250: # Very common personal scale range | |
| range_score = 1.5 | |
| elif weight > 250 and weight <= 500: # Larger weights | |
| range_score = 1.2 | |
| elif weight > 500 and weight <= 1000: | |
| range_score = 1.0 | |
| else: # Very small or very large weights | |
| range_score = 0.5 | |
| digit_count = len(text.replace('.', '')) | |
| digit_score = 1.0 | |
| if digit_count >= 2 and digit_count <= 5: # Prefer weights with 2-5 digits (e.g., 5.0, 75.5, 123.4) | |
| digit_score = 1.3 | |
| elif digit_count == 1: # Single digit weights less common but possible | |
| digit_score = 0.8 | |
| score = conf * range_score * digit_score | |
| # Also consider area of the bounding box relative to ROI for confidence | |
| if roi_bbox: | |
| (x_roi, y_roi, w_roi, h_roi) = roi_bbox | |
| roi_area = w_roi * h_roi | |
| # Calculate bbox area accurately | |
| x_min, y_min = int(min(b[0] for b in bbox)), int(min(b[1] for b in bbox)) | |
| x_max, y_max = int(max(b[0] for b in bbox)), int(max(b[1] for b in bbox)) | |
| bbox_area = (x_max - x_min) * (y_max - y_min) | |
| if roi_area > 0 and bbox_area / roi_area < 0.03: # Very small bounding boxes might be noise | |
| score *= 0.5 | |
| # Penalize if bbox is too narrow (e.g., single line detected as digit) | |
| bbox_aspect_ratio = (x_max - x_min) / (y_max - y_min) if (y_max - y_min) > 0 else 0 | |
| if bbox_aspect_ratio < 0.2: # Very thin bounding boxes | |
| score *= 0.7 | |
| if score > best_score and conf > conf_threshold: | |
| best_weight = text | |
| best_conf = conf | |
| best_score = score | |
| logging.info(f"Candidate EasyOCR weight: '{text}', Conf: {conf}, Score: {score}") | |
| except ValueError: | |
| logging.warning(f"Could not convert '{text}' to float during EasyOCR fallback.") | |
| continue | |
| if not best_weight: | |
| logging.info("No valid weight detected after all attempts.") | |
| return "Not detected", 0.0 | |
| # Final formatting of the best detected weight | |
| if "." in best_weight: | |
| int_part, dec_part = best_weight.split(".") | |
| int_part = int_part.lstrip("0") or "0" # Remove leading zeros, keep "0" for 0.x | |
| dec_part = dec_part.rstrip('0') # Remove trailing zeros after decimal | |
| if not dec_part and int_part != "0": # If decimal part is empty (e.g., "50."), remove the dot | |
| best_weight = int_part | |
| elif not dec_part and int_part == "0": # if it's "0." keep it as "0" | |
| best_weight = "0" | |
| else: | |
| best_weight = f"{int_part}.{dec_part}" | |
| else: | |
| best_weight = best_weight.lstrip('0') or "0" # Remove leading zeros, keep "0" | |
| # Final check for extremely unlikely weights (e.g., 0.0001, 9999) | |
| try: | |
| final_float_weight = float(best_weight) | |
| if final_float_weight < 0.01 or final_float_weight > 1000: # Adjust this range if needed | |
| logging.warning(f"Detected weight {final_float_weight} is outside typical range, reducing confidence.") | |
| best_conf *= 0.5 # Reduce confidence for out-of-range values | |
| except ValueError: | |
| pass # Should not happen if previous parsing worked | |
| logging.info(f"Final detected weight: {best_weight}, Confidence: {round(best_conf * 100, 2)}%") | |
| return best_weight, round(best_conf * 100, 2) | |
| except Exception as e: | |
| logging.error(f"Weight extraction failed unexpectedly: {str(e)}") | |
| return "Not detected", 0.0 |