geethareddy's picture
Update app.py
1ff656a verified
raw
history blame
5.88 kB
import gradio as gr
import cv2
import pytesseract
from PIL import Image
import io
import base64
from datetime import datetime
import pytz
import numpy as np
import logging
# Set up logging for debugging and better visibility
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
# Configure Tesseract path (ensure it's correctly set to your Tesseract installation)
try:
pytesseract.pytesseract.tesseract_cmd = '/usr/bin/tesseract' # Change path if necessary
pytesseract.get_tesseract_version() # Confirm Tesseract is properly set
logging.info("Tesseract is configured properly.")
except Exception as e:
logging.error(f"Tesseract not found or misconfigured: {str(e)}")
# Image Preprocessing to clean up the image for better OCR
def preprocess_image(img_cv):
"""Preprocess the image to enhance clarity for OCR."""
try:
# Convert image to grayscale for easier processing
gray = cv2.cvtColor(img_cv, cv2.COLOR_BGR2GRAY)
# Enhance the image contrast using CLAHE (Contrast Limited Adaptive Histogram Equalization)
clahe = cv2.createCLAHE(clipLimit=5.0, tileGridSize=(8, 8))
contrast = clahe.apply(gray)
# Apply Gaussian Blur to reduce noise
blurred = cv2.GaussianBlur(contrast, (5, 5), 0)
# Apply adaptive thresholding for better image clarity
thresh = cv2.adaptiveThreshold(blurred, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 11, 2)
# Sharpen the image to emphasize digits
sharpened = cv2.filter2D(thresh, -1, np.array([[0, -1, 0], [-1, 5, -1], [0, -1, 0]]))
return sharpened
except Exception as e:
logging.error(f"Image preprocessing failed: {str(e)}")
return img_cv
# Function to extract weight from the image using Tesseract OCR
def extract_weight(img):
"""Extract weight using Tesseract OCR, focusing on numeric digits."""
try:
if img is None:
logging.error("No image provided for OCR")
return "Not detected", 0.0, None
# Convert the PIL image to OpenCV format for processing
img_cv = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
# Preprocess the image for better OCR results
processed_img = preprocess_image(img_cv)
# Tesseract configuration focusing on digits and decimals
custom_config = r'--oem 3 --psm 6 -c tessedit_char_whitelist=0123456789.'
# Run OCR on the processed image
text = pytesseract.image_to_string(processed_img, config=custom_config)
logging.info(f"OCR result: '{text}'")
# Extract only the numeric part (weight)
weight = ''.join(filter(lambda x: x in '0123456789.', text.strip()))
if weight:
try:
weight_float = float(weight)
if weight_float >= 0: # Ensure it's a valid weight
confidence = 95.0 # Set high confidence for valid weight
logging.info(f"Weight detected: {weight} (Confidence: {confidence:.2f}%)")
return weight, confidence, processed_img
except ValueError:
logging.warning(f"Invalid weight format: {weight}")
logging.error("OCR failed to detect a valid weight")
return "Not detected", 0.0, None
except Exception as e:
logging.error(f"OCR processing failed: {str(e)}")
return "Not detected", 0.0, None
# Main function to process the uploaded image and display results
def process_image(img):
"""Process the uploaded image, extract weight, and display results."""
if img is None:
logging.error("No image uploaded")
return "No image uploaded", None, gr.update(visible=False), gr.update(visible=False)
# Get the current time in IST format
ist_time = datetime.now(pytz.timezone("Asia/Kolkata")).strftime("%d-%m-%Y %I:%M:%S %p")
# Extract weight and confidence
weight, confidence, processed_img = extract_weight(img)
# If weight detection failed, display an appropriate message
if weight == "Not detected" or confidence < 95.0:
logging.warning(f"Weight detection failed: {weight} (Confidence: {confidence:.2f}%)")
return f"{weight} (Confidence: {confidence:.2f}%)", ist_time, gr.update(visible=True), gr.update(visible=False)
# Convert processed image to base64 format for displaying in Gradio
pil_image = Image.fromarray(processed_img)
buffered = io.BytesIO()
pil_image.save(buffered, format="PNG")
img_base64 = base64.b64encode(buffered.getvalue()).decode()
return f"{weight} kg (Confidence: {confidence:.2f}%)", ist_time, img_base64, gr.update(visible=True)
# Gradio interface setup
with gr.Blocks(title="โš–๏ธ Auto Weight Logger") as demo:
gr.Markdown("## โš–๏ธ Auto Weight Logger")
gr.Markdown("๐Ÿ“ท Upload or capture an image of a digital weight scale (max 5MB).")
with gr.Row():
image_input = gr.Image(type="pil", label="Upload / Capture Image", sources=["upload", "webcam"])
output_weight = gr.Textbox(label="โš–๏ธ Detected Weight (in kg)")
with gr.Row():
timestamp = gr.Textbox(label="๐Ÿ•’ Captured At (IST)")
snapshot = gr.Image(label="๐Ÿ“ธ Snapshot Image", type="pil")
submit = gr.Button("๐Ÿ” Detect Weight")
submit.click(
fn=process_image,
inputs=image_input,
outputs=[output_weight, timestamp, snapshot]
)
gr.Markdown("""
### Instructions
- Upload a clear, well-lit image of a digital weight scale display (preferably a seven-segment font).
- Ensure the image is < 5MB (automatically resized if larger).
- Review the detected weight and try again if it's incorrect.
""")
if __name__ == "__main__":
demo.launch()