Spaces:
Sleeping
Sleeping
File size: 5,813 Bytes
0507081 1a5f8fd 1d1e3da 1a5f8fd 87a883e 1d1e3da 9df4fc9 1d1e3da 9df4fc9 49bdc4d 9df4fc9 49bdc4d 1a5f8fd 9df4fc9 49bdc4d 0b5db95 49bdc4d 496e98a 0b5db95 49bdc4d 87a883e 49bdc4d 9df4fc9 1a5f8fd 9df4fc9 1a5f8fd 49bdc4d 3caa343 49bdc4d 9df4fc9 1a5f8fd 9df4fc9 0b5db95 49bdc4d 9df4fc9 c0652ff 49bdc4d 9df4fc9 c0652ff 9df4fc9 c0652ff 49bdc4d 9df4fc9 49bdc4d 3caa343 49bdc4d c0652ff 3caa343 1a5f8fd 3caa343 1a5f8fd 9df4fc9 0507081 1a5f8fd 0507081 49bdc4d 3caa343 5699ebb 0b5db95 0507081 0b5db95 3caa343 5699ebb 9df4fc9 1a5f8fd 49bdc4d 3caa343 5699ebb 9df4fc9 3caa343 06308c8 9df4fc9 0507081 1d1e3da 06308c8 0507081 58fea44 0507081 06308c8 0507081 743d772 06308c8 0507081 1d1e3da 87a883e 1d1e3da 49bdc4d 1d1e3da 87a883e 1d1e3da 06308c8 1a5f8fd 496e98a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
import gradio as gr
import cv2
import pytesseract
from PIL import Image
import io
import base64
from datetime import datetime
import pytz
import numpy as np
import logging
# Set up logging for better debugging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
# Configure Tesseract path (ensure it's correctly set to your Tesseract installation)
try:
pytesseract.pytesseract.tesseract_cmd = '/usr/bin/tesseract' # Change this to your tesseract path
pytesseract.get_tesseract_version() # Test Tesseract availability
logging.info("Tesseract is available")
except Exception as e:
logging.error(f"Tesseract not found or misconfigured: {str(e)}")
# Image Preprocessing to improve OCR accuracy
def preprocess_image(img_cv):
"""Preprocess image for OCR: enhance contrast, reduce noise, and apply adaptive thresholding."""
try:
# Convert to grayscale
gray = cv2.cvtColor(img_cv, cv2.COLOR_BGR2GRAY)
# Enhance contrast using CLAHE (Contrast Limited Adaptive Histogram Equalization)
clahe = cv2.createCLAHE(clipLimit=5.0, tileGridSize=(8, 8))
contrast = clahe.apply(gray)
# Reduce noise with Gaussian blur
blurred = cv2.GaussianBlur(contrast, (5, 5), 0)
# Apply adaptive thresholding for better binary image representation
thresh = cv2.adaptiveThreshold(blurred, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 11, 2)
# Sharpen the image to enhance details
sharpened = cv2.filter2D(thresh, -1, np.array([[0, -1, 0], [-1, 5, -1], [0, -1, 0]]))
return sharpened
except Exception as e:
logging.error(f"Image preprocessing failed: {str(e)}")
return img_cv
# Function to extract weight from the image using Tesseract OCR
def extract_weight(img):
"""Extract weight from image using Tesseract OCR."""
try:
if img is None:
logging.error("No image provided for OCR")
return "Not detected", 0.0, None
# Convert PIL image to OpenCV format for processing
img_cv = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
# Preprocess the image (contrast, noise reduction, etc.)
processed_img = preprocess_image(img_cv)
# OCR configuration to focus on digits and decimals
custom_config = r'--oem 3 --psm 6 -c tessedit_char_whitelist=0123456789.'
# Run OCR on the processed image
text = pytesseract.image_to_string(processed_img, config=custom_config)
logging.info(f"OCR result: '{text}'")
# Extract valid weight (only digits and decimals)
weight = ''.join(filter(lambda x: x in '0123456789.', text.strip()))
if weight:
try:
weight_float = float(weight)
if weight_float >= 0: # Ensure valid weight value
confidence = 95.0 # High confidence if weight is valid
logging.info(f"Weight detected: {weight} (Confidence: {confidence:.2f}%)")
return weight, confidence, processed_img
except ValueError:
logging.warning(f"Invalid number format: {weight}")
logging.error("OCR failed to detect a valid weight")
return "Not detected", 0.0, None
except Exception as e:
logging.error(f"OCR processing failed: {str(e)}")
return "Not detected", 0.0, None
# Main function to process the image and return results
def process_image(img):
"""Process uploaded or captured image and extract weight."""
if img is None:
logging.error("No image provided")
return "No image uploaded", None, gr.update(visible=False), gr.update(visible=False)
# Get the current time in IST format
ist_time = datetime.now(pytz.timezone("Asia/Kolkata")).strftime("%d-%m-%Y %I:%M:%S %p")
# Extract weight and confidence from the image
weight, confidence, processed_img = extract_weight(img)
# If no weight detected, display the failure message
if weight == "Not detected" or confidence < 95.0:
logging.warning(f"Weight detection failed: {weight} (Confidence: {confidence:.2f}%)")
return f"{weight} (Confidence: {confidence:.2f}%)", ist_time, gr.update(visible=True), gr.update(visible=False)
# Convert processed image to base64 for displaying it as a snapshot
pil_image = Image.fromarray(processed_img)
buffered = io.BytesIO()
pil_image.save(buffered, format="PNG")
img_base64 = base64.b64encode(buffered.getvalue()).decode()
return f"{weight} kg (Confidence: {confidence:.2f}%)", ist_time, img_base64, gr.update(visible=True)
# Gradio Interface for user input and displaying results
with gr.Blocks(title="โ๏ธ Auto Weight Logger") as demo:
gr.Markdown("## โ๏ธ Auto Weight Logger")
gr.Markdown("๐ท Upload or capture an image of a digital weight scale (max 5MB).")
with gr.Row():
image_input = gr.Image(type="pil", label="Upload / Capture Image", sources=["upload", "webcam"])
output_weight = gr.Textbox(label="โ๏ธ Detected Weight (in kg)")
with gr.Row():
timestamp = gr.Textbox(label="๐ Captured At (IST)")
snapshot = gr.Image(label="๐ธ Snapshot Image", type="pil")
submit = gr.Button("๐ Detect Weight")
submit.click(
fn=process_image,
inputs=image_input,
outputs=[output_weight, timestamp, snapshot]
)
gr.Markdown("""
### Instructions
- Upload a clear, well-lit image of a digital weight scale display (7-segment font preferred).
- Ensure the image is < 5MB (automatically resized if larger).
- Review the detected weight and try again if it's incorrect.
""")
if __name__ == "__main__":
demo.launch()
|