Spaces:
Sleeping
Sleeping
File size: 5,605 Bytes
0507081 1a5f8fd 1d1e3da 1a5f8fd 87a883e 1d1e3da 71f6c9d 1d1e3da 71f6c9d 49bdc4d 71f6c9d 1ff656a 49bdc4d 1a5f8fd 71f6c9d 49bdc4d 71f6c9d 49bdc4d 71f6c9d 49bdc4d 1ff656a 71f6c9d 0b5db95 49bdc4d 1ff656a 71f6c9d 49bdc4d 1ff656a 71f6c9d 0b5db95 1ff656a 71f6c9d 0b5db95 49bdc4d 87a883e 49bdc4d 71f6c9d 1a5f8fd 71f6c9d 1a5f8fd 49bdc4d 3caa343 49bdc4d 71f6c9d 1a5f8fd 1ff656a 71f6c9d 0b5db95 49bdc4d 71f6c9d c0652ff 49bdc4d 71f6c9d c0652ff 71f6c9d c0652ff 49bdc4d 1ff656a 71f6c9d 49bdc4d 3caa343 49bdc4d 1ff656a 49bdc4d c0652ff 3caa343 1a5f8fd 3caa343 1a5f8fd 71f6c9d 0507081 71f6c9d 0507081 1ff656a 3caa343 5699ebb 71f6c9d 0507081 0b5db95 1ff656a 3caa343 5699ebb 71f6c9d 1a5f8fd 49bdc4d 3caa343 5699ebb 71f6c9d 3caa343 06308c8 71f6c9d 0507081 1d1e3da 06308c8 0507081 58fea44 0507081 06308c8 0507081 743d772 06308c8 0507081 1d1e3da 87a883e 1d1e3da 1ff656a 1d1e3da 87a883e 1d1e3da 06308c8 1a5f8fd 496e98a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
import gradio as gr
import cv2
import pytesseract
from PIL import Image
import io
import base64
from datetime import datetime
import pytz
import numpy as np
import logging
# Set up logging for better debugging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
# Ensure Tesseract is correctly set up
try:
pytesseract.pytesseract.tesseract_cmd = '/usr/bin/tesseract' # Make sure to set the correct path
pytesseract.get_tesseract_version() # Confirm Tesseract is installed
logging.info("Tesseract is configured properly.")
except Exception as e:
logging.error(f"Tesseract not found or misconfigured: {str(e)}")
# Image Preprocessing to enhance OCR accuracy
def preprocess_image(img_cv):
"""Preprocess the image for better OCR accuracy."""
try:
# Convert to grayscale
gray = cv2.cvtColor(img_cv, cv2.COLOR_BGR2GRAY)
# Enhance contrast with CLAHE
clahe = cv2.createCLAHE(clipLimit=5.0, tileGridSize=(8, 8))
contrast = clahe.apply(gray)
# Apply Gaussian blur to reduce noise
blurred = cv2.GaussianBlur(contrast, (5, 5), 0)
# Apply adaptive thresholding
thresh = cv2.adaptiveThreshold(blurred, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 11, 2)
# Sharpen the image to emphasize edges
sharpened = cv2.filter2D(thresh, -1, np.array([[0, -1, 0], [-1, 5, -1], [0, -1, 0]]))
return sharpened
except Exception as e:
logging.error(f"Image preprocessing failed: {str(e)}")
return img_cv
# Function to extract weight using Tesseract OCR
def extract_weight(img):
"""Extract weight using Tesseract OCR, focused on digits and decimals."""
try:
if img is None:
logging.error("No image provided for OCR")
return "Not detected", 0.0, None
# Convert PIL image to OpenCV format
img_cv = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
# Preprocess the image
processed_img = preprocess_image(img_cv)
# Tesseract configuration to focus on digits and decimal points
custom_config = r'--oem 3 --psm 6 -c tessedit_char_whitelist=0123456789.'
# Run OCR
text = pytesseract.image_to_string(processed_img, config=custom_config)
logging.info(f"OCR result: '{text}'")
# Extract the valid weight (numbers and decimal points)
weight = ''.join(filter(lambda x: x in '0123456789.', text.strip()))
if weight:
try:
weight_float = float(weight)
if weight_float >= 0: # Ensure it's a valid weight
confidence = 95.0 # High confidence for valid weight
logging.info(f"Weight detected: {weight} (Confidence: {confidence:.2f}%)")
return weight, confidence, processed_img
except ValueError:
logging.warning(f"Invalid weight format: {weight}")
logging.error("OCR failed to detect a valid weight")
return "Not detected", 0.0, None
except Exception as e:
logging.error(f"OCR processing failed: {str(e)}")
return "Not detected", 0.0, None
# Main function to process the image and display results
def process_image(img):
"""Process the uploaded image and show results."""
if img is None:
logging.error("No image uploaded")
return "No image uploaded", None, gr.update(visible=False), gr.update(visible=False)
# Get the current timestamp in IST format
ist_time = datetime.now(pytz.timezone("Asia/Kolkata")).strftime("%d-%m-%Y %I:%M:%S %p")
# Extract weight and confidence
weight, confidence, processed_img = extract_weight(img)
# If weight detection fails, show the error message
if weight == "Not detected" or confidence < 95.0:
logging.warning(f"Weight detection failed: {weight} (Confidence: {confidence:.2f}%)")
return f"{weight} (Confidence: {confidence:.2f}%)", ist_time, gr.update(visible=True), gr.update(visible=False)
# Convert processed image to base64 for Gradio to display
pil_image = Image.fromarray(processed_img)
buffered = io.BytesIO()
pil_image.save(buffered, format="PNG")
img_base64 = base64.b64encode(buffered.getvalue()).decode()
return f"{weight} kg (Confidence: {confidence:.2f}%)", ist_time, img_base64, gr.update(visible=True)
# Gradio Interface setup for Hugging Face
with gr.Blocks(title="โ๏ธ Auto Weight Logger") as demo:
gr.Markdown("## โ๏ธ Auto Weight Logger")
gr.Markdown("๐ท Upload or capture an image of a digital weight scale (max 5MB).")
with gr.Row():
image_input = gr.Image(type="pil", label="Upload / Capture Image", sources=["upload", "webcam"])
output_weight = gr.Textbox(label="โ๏ธ Detected Weight (in kg)")
with gr.Row():
timestamp = gr.Textbox(label="๐ Captured At (IST)")
snapshot = gr.Image(label="๐ธ Snapshot Image", type="pil")
submit = gr.Button("๐ Detect Weight")
submit.click(
fn=process_image,
inputs=image_input,
outputs=[output_weight, timestamp, snapshot]
)
gr.Markdown("""
### Instructions
- Upload a clear, well-lit image of a digital weight scale display (preferably a seven-segment font).
- Ensure the image is < 5MB (automatically resized if larger).
- Review the detected weight and try again if it's incorrect.
""")
if __name__ == "__main__":
demo.launch()
|