Spaces:
Sleeping
Sleeping
File size: 5,532 Bytes
0507081 1a5f8fd 1d1e3da 1a5f8fd 87a883e 1d1e3da 87a883e 49bdc4d 0b5db95 49bdc4d 1a5f8fd 0b5db95 49bdc4d 0b5db95 49bdc4d 496e98a 0b5db95 49bdc4d 87a883e 49bdc4d 0b5db95 1a5f8fd c0652ff 1a5f8fd 49bdc4d 3caa343 49bdc4d 1a5f8fd 0b5db95 49bdc4d c0652ff 49bdc4d c0652ff 0b5db95 c0652ff 49bdc4d 0b5db95 c0652ff 49bdc4d 3caa343 49bdc4d c0652ff 3caa343 1a5f8fd 3caa343 1a5f8fd 0b5db95 0507081 1a5f8fd 0507081 49bdc4d 3caa343 5699ebb 0b5db95 0507081 0b5db95 3caa343 5699ebb 1a5f8fd 49bdc4d 3caa343 5699ebb 0b5db95 3caa343 06308c8 1a5f8fd 0507081 1d1e3da 06308c8 0507081 58fea44 0507081 06308c8 0507081 743d772 06308c8 0507081 1d1e3da 87a883e 1d1e3da 49bdc4d 1d1e3da 87a883e 1d1e3da 06308c8 1a5f8fd 496e98a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
import gradio as gr
import cv2
import pytesseract
from PIL import Image
import io
import base64
from datetime import datetime
import pytz
import numpy as np
import logging
# Set up logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
# Configure Tesseract path
try:
pytesseract.pytesseract.tesseract_cmd = '/usr/bin/tesseract' # Adjust path if needed
pytesseract.get_tesseract_version() # Test Tesseract availability
logging.info("Tesseract is available")
except Exception as e:
logging.error(f"Tesseract not found or misconfigured: {str(e)}")
# Preprocessing function
def preprocess_image(img_cv):
"""Preprocess image for OCR: enhance contrast, reduce noise, and apply adaptive thresholding."""
try:
# Convert to grayscale
gray = cv2.cvtColor(img_cv, cv2.COLOR_BGR2GRAY)
# Enhance contrast using CLAHE (Contrast Limited Adaptive Histogram Equalization)
clahe = cv2.createCLAHE(clipLimit=5.0, tileGridSize=(8, 8))
contrast = clahe.apply(gray)
# Reduce noise with Gaussian blur
blurred = cv2.GaussianBlur(contrast, (5, 5), 0)
# Apply adaptive thresholding for better binary image representation
thresh = cv2.adaptiveThreshold(blurred, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 11, 2)
# Sharpen the image to enhance details
sharpened = cv2.filter2D(thresh, -1, np.array([[0, -1, 0], [-1, 5, -1], [0, -1, 0]]))
return sharpened
except Exception as e:
logging.error(f"Image preprocessing failed: {str(e)}")
return img_cv
# Function to extract weight using OCR
def extract_weight(img):
"""Extract weight from image using Tesseract OCR with improved configuration."""
try:
if img is None:
logging.error("No image provided for OCR")
return "Not detected", 0.0, None
# Convert PIL image to OpenCV format
img_cv = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
# Preprocess the image
processed_img = preprocess_image(img_cv)
# OCR configuration for digit extraction
custom_config = r'--oem 3 --psm 6 -c tessedit_char_whitelist=0123456789.'
# Run OCR
text = pytesseract.image_to_string(processed_img, config=custom_config)
logging.info(f"OCR result: '{text}'")
# Extract valid weight from OCR result (strip unwanted characters)
weight = ''.join(filter(lambda x: x in '0123456789.', text.strip()))
if weight:
try:
weight_float = float(weight)
if weight_float >= 0: # Only accept valid weights
confidence = 95.0 # Assume high confidence if we have a valid weight
logging.info(f"Weight detected: {weight} (Confidence: {confidence:.2f}%)")
return weight, confidence, processed_img
except ValueError:
logging.warning(f"Invalid number format: {weight}")
logging.error("OCR failed to detect a valid weight")
return "Not detected", 0.0, None
except Exception as e:
logging.error(f"OCR processing failed: {str(e)}")
return "Not detected", 0.0, None
# Main function to process image and display results
def process_image(img):
"""Process uploaded or captured image and extract weight."""
if img is None:
logging.error("No image provided")
return "No image uploaded", None, gr.update(visible=False), gr.update(visible=False)
# Get the current time in IST format
ist_time = datetime.now(pytz.timezone("Asia/Kolkata")).strftime("%d-%m-%Y %I:%M:%S %p")
# Extract weight and confidence from the image
weight, confidence, processed_img = extract_weight(img)
if weight == "Not detected" or confidence < 95.0:
logging.warning(f"Weight detection failed: {weight} (Confidence: {confidence:.2f}%)")
return f"{weight} (Confidence: {confidence:.2f}%)", ist_time, gr.update(visible=True), gr.update(visible=False)
# Convert processed image to base64 for display
pil_image = Image.fromarray(processed_img)
buffered = io.BytesIO()
pil_image.save(buffered, format="PNG")
img_base64 = base64.b64encode(buffered.getvalue()).decode()
return f"{weight} kg (Confidence: {confidence:.2f}%)", ist_time, img_base64, gr.update(visible=True)
# Gradio Interface
with gr.Blocks(title="โ๏ธ Auto Weight Logger") as demo:
gr.Markdown("## โ๏ธ Auto Weight Logger")
gr.Markdown("๐ท Upload or capture an image of a digital weight scale (max 5MB).")
with gr.Row():
image_input = gr.Image(type="pil", label="Upload / Capture Image", sources=["upload", "webcam"])
output_weight = gr.Textbox(label="โ๏ธ Detected Weight (in kg)")
with gr.Row():
timestamp = gr.Textbox(label="๐ Captured At (IST)")
snapshot = gr.Image(label="๐ธ Snapshot Image", type="pil")
submit = gr.Button("๐ Detect Weight")
submit.click(
fn=process_image,
inputs=image_input,
outputs=[output_weight, timestamp, snapshot]
)
gr.Markdown("""
### Instructions
- Upload a clear, well-lit image of a digital weight scale display (7-segment font preferred).
- Ensure the image is < 5MB (automatically resized if larger).
- Review the detected weight and try again if it's incorrect.
""")
if __name__ == "__main__":
demo.launch()
|