Spaces:
Running
Running
import os | |
from enum import Enum | |
from typing import Any, Optional, Union | |
import instructor | |
import weave | |
from PIL import Image | |
from ..utils import base64_encode_image | |
class ClientType(Enum, str): | |
GEMINI = "gemini" | |
MISTRAL = "mistral" | |
class LLMClient(weave.Model): | |
model_name: str | |
client_type: ClientType | |
def __init__(self, model_name: str, client_type: ClientType): | |
super().__init__(model_name=model_name, client_type=client_type) | |
def execute_gemini_sdk( | |
self, | |
user_prompt: Union[str, list[str]], | |
system_prompt: Optional[Union[str, list[str]]] = None, | |
schema: Optional[Any] = None, | |
) -> Union[str, Any]: | |
import google.generativeai as genai | |
system_prompt = ( | |
[system_prompt] if isinstance(system_prompt, str) else system_prompt | |
) | |
user_prompt = [user_prompt] if isinstance(user_prompt, str) else user_prompt | |
genai.configure(api_key=os.environ.get("GOOGLE_API_KEY")) | |
model = genai.GenerativeModel(self.model_name) | |
generation_config = ( | |
None | |
if schema is None | |
else genai.GenerationConfig( | |
response_mime_type="application/json", response_schema=list[schema] | |
) | |
) | |
response = model.generate_content( | |
system_prompt + user_prompt, generation_config=generation_config | |
) | |
return response.text if schema is None else response | |
def execute_mistral_sdk( | |
self, | |
user_prompt: Union[str, list[str]], | |
system_prompt: Optional[Union[str, list[str]]] = None, | |
schema: Optional[Any] = None, | |
) -> Union[str, Any]: | |
from mistralai import Mistral | |
system_prompt = ( | |
[system_prompt] if isinstance(system_prompt, str) else system_prompt | |
) | |
user_prompt = [user_prompt] if isinstance(user_prompt, str) else user_prompt | |
system_messages = [{"type": "text", "text": prompt} for prompt in system_prompt] | |
user_messages = [] | |
for prompt in user_prompt: | |
if isinstance(prompt, Image.Image): | |
user_messages.append( | |
{ | |
"type": "image_url", | |
"image_url": base64_encode_image(prompt, "image/png"), | |
} | |
) | |
else: | |
user_messages.append({"type": "text", "text": prompt}) | |
messages = [ | |
{"role": "system", "content": system_messages}, | |
{"role": "user", "content": user_messages}, | |
] | |
client = Mistral(api_key=os.environ.get("MISTRAL_API_KEY")) | |
client = instructor.from_mistral(client) | |
response = ( | |
client.chat.complete(model=self.model_name, messages=messages) | |
if schema is None | |
else client.messages.create( | |
response_model=schema, messages=messages, temperature=0 | |
) | |
) | |
return response.choices[0].message.content | |
def predict( | |
self, | |
user_prompt: Union[str, list[str]], | |
system_prompt: Optional[Union[str, list[str]]] = None, | |
schema: Optional[Any] = None, | |
) -> Union[str, Any]: | |
if self.client_type == ClientType.GEMINI: | |
return self.execute_gemini_sdk(user_prompt, system_prompt, schema) | |
elif self.client_type == ClientType.MISTRAL: | |
return self.execute_mistral_sdk(user_prompt, system_prompt, schema) | |
else: | |
raise ValueError(f"Invalid client type: {self.client_type}") | |