Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,20 +1,119 @@
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import torch
|
| 3 |
-
from transformers import pipeline
|
| 4 |
|
| 5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
)
|
| 19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
iface.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import json
|
| 3 |
+
import librosa
|
| 4 |
+
import os
|
| 5 |
+
import soundfile as sf
|
| 6 |
+
import tempfile
|
| 7 |
+
import uuid
|
| 8 |
+
|
| 9 |
import torch
|
|
|
|
| 10 |
|
| 11 |
+
from nemo.collections.asr.models import ASRModel
|
| 12 |
+
from nemo.collections.asr.parts.utils.streaming_utils import FrameBatchMultiTaskAED
|
| 13 |
+
from nemo.collections.asr.parts.utils.transcribe_utils import get_buffered_pred_feat_multitaskAED
|
| 14 |
+
|
| 15 |
+
SAMPLE_RATE = 16000 # Hz
|
| 16 |
+
MAX_AUDIO_MINUTES = 10 # wont try to transcribe if longer than this
|
| 17 |
+
|
| 18 |
+
model = ASRModel.from_pretrained("nvidia/canary-1b")
|
| 19 |
+
model.eval()
|
| 20 |
|
| 21 |
+
# make sure beam size always 1 for consistency
|
| 22 |
+
model.change_decoding_strategy(None)
|
| 23 |
+
decoding_cfg = model.cfg.decoding
|
| 24 |
+
decoding_cfg.beam.beam_size = 1
|
| 25 |
+
model.change_decoding_strategy(decoding_cfg)
|
| 26 |
|
| 27 |
+
# setup for buffered inference
|
| 28 |
+
model.cfg.preprocessor.dither = 0.0
|
| 29 |
+
model.cfg.preprocessor.pad_to = 0
|
| 30 |
|
| 31 |
+
feature_stride = model.cfg.preprocessor['window_stride']
|
| 32 |
+
model_stride_in_secs = feature_stride * 8 # 8 = model stride, which is 8 for FastConformer
|
| 33 |
+
|
| 34 |
+
frame_asr = FrameBatchMultiTaskAED(
|
| 35 |
+
asr_model=model,
|
| 36 |
+
frame_len=40.0,
|
| 37 |
+
total_buffer=40.0,
|
| 38 |
+
batch_size=16,
|
| 39 |
)
|
| 40 |
|
| 41 |
+
amp_dtype = torch.float16
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
def transcribe(audio_filepath, src_lang="en", tgt_lang="en", pnc="yes"):
|
| 45 |
+
|
| 46 |
+
if audio_filepath is None:
|
| 47 |
+
raise gr.Error("Please provide some input audio: either upload an audio file or use the microphone")
|
| 48 |
+
|
| 49 |
+
utt_id = uuid.uuid4()
|
| 50 |
+
with tempfile.TemporaryDirectory() as tmpdir:
|
| 51 |
+
converted_audio_filepath, duration = convert_audio(audio_filepath, tmpdir, str(utt_id))
|
| 52 |
+
|
| 53 |
+
# map src_lang and tgt_lang from long versions to short
|
| 54 |
+
LANG_LONG_TO_LANG_SHORT = {
|
| 55 |
+
"English": "en",
|
| 56 |
+
"Spanish": "es",
|
| 57 |
+
"French": "fr",
|
| 58 |
+
"German": "de",
|
| 59 |
+
}
|
| 60 |
+
if src_lang not in LANG_LONG_TO_LANG_SHORT.keys():
|
| 61 |
+
raise ValueError(f"src_lang must be one of {LANG_LONG_TO_LANG_SHORT.keys()}")
|
| 62 |
+
else:
|
| 63 |
+
src_lang = LANG_LONG_TO_LANG_SHORT[src_lang]
|
| 64 |
+
|
| 65 |
+
if tgt_lang not in LANG_LONG_TO_LANG_SHORT.keys():
|
| 66 |
+
raise ValueError(f"tgt_lang must be one of {LANG_LONG_TO_LANG_SHORT.keys()}")
|
| 67 |
+
else:
|
| 68 |
+
tgt_lang = LANG_LONG_TO_LANG_SHORT[tgt_lang]
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
# infer taskname from src_lang and tgt_lang
|
| 72 |
+
if src_lang == tgt_lang:
|
| 73 |
+
taskname = "asr"
|
| 74 |
+
else:
|
| 75 |
+
taskname = "s2t_translation"
|
| 76 |
+
|
| 77 |
+
# update pnc variable to be "yes" or "no"
|
| 78 |
+
pnc = "yes" if pnc else "no"
|
| 79 |
+
|
| 80 |
+
# make manifest file and save
|
| 81 |
+
manifest_data = {
|
| 82 |
+
"audio_filepath": converted_audio_filepath,
|
| 83 |
+
"source_lang": src_lang,
|
| 84 |
+
"target_lang": tgt_lang,
|
| 85 |
+
"taskname": taskname,
|
| 86 |
+
"pnc": pnc,
|
| 87 |
+
"answer": "predict",
|
| 88 |
+
"duration": str(duration),
|
| 89 |
+
}
|
| 90 |
+
|
| 91 |
+
manifest_filepath = os.path.join(tmpdir, f'{utt_id}.json')
|
| 92 |
+
|
| 93 |
+
with open(manifest_filepath, 'w') as fout:
|
| 94 |
+
line = json.dumps(manifest_data)
|
| 95 |
+
fout.write(line + '\n')
|
| 96 |
+
|
| 97 |
+
# call transcribe, passing in manifest filepath
|
| 98 |
+
if duration < 40:
|
| 99 |
+
output_text = model.transcribe(manifest_filepath)[0]
|
| 100 |
+
else: # do buffered inference
|
| 101 |
+
with torch.cuda.amp.autocast(dtype=amp_dtype): # TODO: make it work if no cuda
|
| 102 |
+
with torch.no_grad():
|
| 103 |
+
hyps = get_buffered_pred_feat_multitaskAED(
|
| 104 |
+
frame_asr,
|
| 105 |
+
model.cfg.preprocessor,
|
| 106 |
+
model_stride_in_secs,
|
| 107 |
+
model.device,
|
| 108 |
+
manifest=manifest_filepath,
|
| 109 |
+
filepaths=None,
|
| 110 |
+
)
|
| 111 |
+
|
| 112 |
+
output_text = hyps[0].text
|
| 113 |
+
|
| 114 |
+
return output_text
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
iface = gr.Interface(fn=transcribe, inputs=gr.Audio(source="microphone"), outputs="text")
|
| 118 |
+
|
| 119 |
iface.launch()
|