Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM,
|
4 |
from nemo.collections.asr.models import ASRModel
|
5 |
|
6 |
|
@@ -27,9 +27,9 @@ proc_model = AutoModelForCausalLM.from_pretrained(
|
|
27 |
trust_remote_code=True,
|
28 |
)
|
29 |
|
30 |
-
# Load the TTS model
|
31 |
-
|
32 |
-
|
33 |
|
34 |
|
35 |
def process_speech(speech):
|
@@ -39,14 +39,12 @@ def process_speech(speech):
|
|
39 |
# Process the text
|
40 |
inputs = proc_tokenizer.encode(transcription + proc_tokenizer.eos_token, return_tensors='pt')
|
41 |
outputs = proc_model.generate(inputs, max_length=100, temperature=0.7, pad_token_id=proc_tokenizer.eos_token_id)
|
42 |
-
|
43 |
-
|
|
|
44 |
# Convert the processed text to speech
|
45 |
-
inputs = tts_processor(processed_text, return_tensors="pt")
|
46 |
with torch.no_grad():
|
47 |
-
|
48 |
-
predicted_ids = torch.argmax(logits, dim=-1)
|
49 |
-
audio = tts_processor.decode(predicted_ids)
|
50 |
|
51 |
return audio
|
52 |
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, VitsModel
|
4 |
from nemo.collections.asr.models import ASRModel
|
5 |
|
6 |
|
|
|
27 |
trust_remote_code=True,
|
28 |
)
|
29 |
|
30 |
+
# Load the TTS model
|
31 |
+
tts_model = VitsModel.from_pretrained("facebook/mms-tts-eng")
|
32 |
+
tts_tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-eng")
|
33 |
|
34 |
|
35 |
def process_speech(speech):
|
|
|
39 |
# Process the text
|
40 |
inputs = proc_tokenizer.encode(transcription + proc_tokenizer.eos_token, return_tensors='pt')
|
41 |
outputs = proc_model.generate(inputs, max_length=100, temperature=0.7, pad_token_id=proc_tokenizer.eos_token_id)
|
42 |
+
text = proc_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
43 |
+
processed_text = tts_tokenizer(text, return_tensors="pt")
|
44 |
+
|
45 |
# Convert the processed text to speech
|
|
|
46 |
with torch.no_grad():
|
47 |
+
audio = tts_model(**inputs).waveform
|
|
|
|
|
48 |
|
49 |
return audio
|
50 |
|