Chatty_Ashe / app.py
gdnartea's picture
Update app.py
f0b7b32 verified
raw
history blame
950 Bytes
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
torch.random.manual_seed(0)
proc_model = AutoModelForCausalLM.from_pretrained(
"microsoft/Phi-3-mini-4k-instruct",
trust_remote_code=True,
)
proc_model.to("cpu")
proc_model.eval()
proc_tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3-mini-4k-instruct")
proc_pipe = pipeline(
"text-generation",
model=proc_model,
tokenizer=proc_tokenizer,
)
generation_args = {
"max_new_tokens": 500,
"return_full_text": False,
"temperature": 0.0,
"do_sample": False,
}
def generate_response(inputs):
output = proc_pipe(inputs, **generation_args)
return output[0]['generated_text']
# Create a Gradio interface
iface = gr.Interface(
fn=generate_response,
inputs=[gr.Textbox(lines=5, placeholder="Enter your prompt here...")]
outputs=gr.Textbox()
)
# Launch the interface
iface.launch()