Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
from transformers import AutoTokenizer, AutoModelForCausalLM, VitsForConditionalGeneration, VitsProcessor | |
from nemo.collections.asr.models import ASRModel | |
# load speech to text model | |
canary_model = ASRModel.from_pretrained('nvidia/canary-1b') | |
canary_model.eval() | |
# update decode params | |
canary_model.change_decoding_strategy(None) | |
decode_cfg = canary_model.cfg.decoding | |
decode_cfg.beam.beam_size = 1 | |
canary_model.change_decoding_strategy(decode_cfg) | |
# Load the text processing model and tokenizer | |
proc_tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3-mini-128k-instruct") | |
proc_model = AutoModelForCausalLM.from_pretrained( | |
"microsoft/Phi-3-mini-128k-instruct", | |
device_map="cuda", | |
torch_dtype="auto", | |
trust_remote_code=True, ) | |
) | |
# Load the TTS model and processor | |
tts_processor = VitsProcessor.from_pretrained("facebook/mms-tts-eng") | |
tts_model = VitsForConditionalGeneration.from_pretrained("facebook/mms-tts-eng") | |
def process_speech(speech): | |
# Convert the speech to text | |
transcription = canary_model.transcribe(speech, logprobs=False) | |
# Process the text | |
inputs = proc_tokenizer.encode(transcription + proc_tokenizer.eos_token, return_tensors='pt') | |
outputs = proc_model.generate(inputs, max_length=100, temperature=0.7, pad_token_id=proc_tokenizer.eos_token_id) | |
processed_text = proc_tokenizer.decode(outputs[0], skip_special_tokens=True) | |
# Convert the processed text to speech | |
inputs = tts_processor(processed_text, return_tensors="pt") | |
with torch.no_grad(): | |
logits = tts_model(inputs["input_ids"]).logits | |
predicted_ids = torch.argmax(logits, dim=-1) | |
audio = tts_processor.decode(predicted_ids) | |
return audio | |
iface = gr.Interface(fn=process_speech, inputs=gr.inputs.Audio(source="microphone"), outputs="audio") | |
iface.launch() |