Chatty_Ashe / app.py
gdnartea's picture
Update app.py
3e0dbc5 verified
raw
history blame
2.22 kB
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM, Speech2TextProcessor, Speech2TextForConditionalGeneration, VitsProcessor, VitsForConditionalGeneration
from nemo.collections.asr.models import EncDecMultiTaskModel
# Load the ASR model and processor // fix processor stuff first
asr_processor = Speech2TextProcessor.from_pretrained("/path/to/canary/processor")
asr_model = EncDecMultiTaskModel.from_pretrained('nvidia/canary-1b')
# update dcode params
decode_cfg = canary_model.cfg.decoding
decode_cfg.beam.beam_size = 1
canary_model.change_decoding_strategy(decode_cfg)
# Load the text processing model and tokenizer
proc_tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3-mini-128k-instruct")
proc_model = AutoModelForCausalLM.from_pretrained(
"microsoft/Phi-3-mini-128k-instruct",
device_map="cuda",
torch_dtype="auto",
trust_remote_code=True,
# Load the TTS model and processor
tts_processor = VitsProcessor.from_pretrained("/path/to/vits/processor")
tts_model = VitsForConditionalGeneration.from_pretrained("/path/to/vits/model")
def process_speech(speech):
# Convert the speech to text
inputs = asr_processor(speech, sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = asr_model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
transcription = asr_processor.decode(predicted_ids[0])
# Process the text
inputs = proc_tokenizer.encode(transcription + proc_tokenizer.eos_token, return_tensors='pt')
outputs = proc_model.generate(inputs, max_length=100, temperature=0.7, pad_token_id=proc_tokenizer.eos_token_id)
processed_text = proc_tokenizer.decode(outputs[0], skip_special_tokens=True)
# Convert the processed text to speech
inputs = tts_processor(processed_text, return_tensors="pt")
with torch.no_grad():
logits = tts_model(inputs["input_ids"]).logits
predicted_ids = torch.argmax(logits, dim=-1)
audio = tts_processor.decode(predicted_ids)
return audio
iface = gr.Interface(fn=process_speech, inputs=gr.inputs.Audio(source="microphone"), outputs="audio")
iface.launch()