File size: 5,396 Bytes
3519dec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
import gradio as gr
import requests
import os
from PIL import Image
from io import BytesIO
from tqdm import tqdm
import time
repo = "artificialguybr/TshirtDesignRedmond-V2"
def infer(color_prompt, Phone_type_prompt, design_prompt):
prompt = (
f"A single {color_prompt} colored {Phone_type_prompt} back cover featuring a bold {design_prompt} design on the front. The soft light and shadows, creating a striking contrast against the minimal background, evoking modern sophistication.")
full_prompt = f"{prompt}"
print("Generating image with prompt:", full_prompt)
api_url = f"https://api-inference.huggingface.co/models/{repo}"
headers = {
# "Authorization": f"Bearer {token}" # Uncomment and use your Hugging Face API token
}
payload = {
"inputs": full_prompt,
"parameters": {
"negative_prompt": "(worst quality, low quality, normal quality, lowres, low details, oversaturated, undersaturated, overexposed, underexposed, grayscale, bw, bad photo, bad photography, bad art:1.4), (watermark, signature, text font, username, error, logo, words, letters, digits, autograph, trademark, name:1.2), (blur, blurry, grainy), morbid, ugly, asymmetrical, mutated malformed, mutilated, poorly lit, bad shadow, draft, cropped, out of frame, cut off, censored, jpeg artifacts, out of focus, glitch, duplicate, (airbrushed, cartoon, anime, semi-realistic, cgi, render, blender, digital art, manga, amateur:1.3), (3D ,3D Game, 3D Game Scene, 3D Character:1.1), (bad hands, bad anatomy, bad body, bad face, bad teeth, bad arms, bad legs, deformities:1.3)",
"num_inference_steps": 30,
"scheduler": "DPMSolverMultistepScheduler"
},
}
error_count = 0
pbar = tqdm(total=None, desc="Loading model")
while True:
print("Sending request to API...")
response = requests.post(api_url, headers=headers, json=payload)
print("API response status code:", response.status_code)
if response.status_code == 200:
print("Image generation successful!")
return Image.open(BytesIO(response.content))
elif response.status_code == 503:
time.sleep(1)
pbar.update(1)
elif response.status_code == 500 and error_count < 5:
time.sleep(1)
error_count += 1
else:
print("API Error:", response.status_code)
raise Exception(f"API Error: {response.status_code}")
# Customized CSS and JS for Enhanced UI
custom_css = """
body {
font-family: 'Poppins', sans-serif;
background-color: #f8f9fa;
margin: 0;
padding: 0;
}
#component-1, #component-2, #component-3 {
margin-bottom: 20px;
}
.gradio-container {
width: 90%;
max-width: 1200px;
margin: auto;
padding: 20px;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
border-radius: 12px;
background: white;
position: relative;
}
button {
font-size: 1.2rem;
padding: 10px 20px;
background-color: #007bff;
border: none;
color: white;
border-radius: 5px;
cursor: pointer;
transition: 0.3s all;
box-shadow: 0px 8px 15px rgba(0, 123, 255, 0.2);
}
button:hover {
background-color: #0056b3;
box-shadow: 0px 15px 20px rgba(0, 123, 255, 0.4);
transform: translateY(-2px);
}
textarea {
border: 2px solid #ccc;
border-radius: 8px;
padding: 10px;
font-size: 1rem;
}
textarea:focus {
border-color: #007bff;
}
.gr-input {
padding: 10px;
border: 2px solid #ccc;
border-radius: 8px;
transition: 0.3s;
}
.gr-input:focus {
border-color: #007bff;
outline: none;
}
.output-image {
max-width: 100%;
border-radius: 12px;
border: 2px solid #007bff;
}
.flashy-btn {
animation: flash 1.5s infinite;
}
@keyframes flash {
0%, 100% {
box-shadow: 0 0 10px #007bff, 0 0 40px #007bff, 0 0 80px #007bff;
}
50% {
box-shadow: 0 0 20px #0056b3, 0 0 50px #0056b3, 0 0 100px #0056b3;
}
}
"""
custom_js = """
<script>
document.addEventListener('DOMContentLoaded', function () {
const button = document.querySelector('button');
button.addEventListener('mouseenter', () => {
button.classList.add('flashy-btn');
});
button.addEventListener('mouseleave', () => {
button.classList.remove('flashy-btn');
});
});
</script>
"""
# Create the Gradio interface
with gr.Blocks(css=custom_css) as interface:
gr.HTML(custom_js)
gr.Markdown(
"""
# **AI Phone Cover Designer**
Create custom designs for your brand with AI. Specify color, style, and design details.
"""
)
with gr.Row():
with gr.Column():
color_prompt = gr.Textbox(label="Color", placeholder="E.g., Red", elem_id="component-1")
Back_cover_prompt = gr.Textbox(label="Mobile type", placeholder="E.g., iPhone, Samsung", elem_id="component-2")
design_prompt = gr.Textbox(label="Design Details", placeholder="E.g., Bold stripes with geometric patterns", elem_id="component-3")
generate_button = gr.Button("Generate Design")
with gr.Column():
output = gr.Image(label="Generated Design", elem_id="output-image")
generate_button.click(infer, inputs=[color_prompt, Back_cover_prompt, design_prompt], outputs=output)
# Launch the app
interface.launch(debug=True)
|