File size: 5,484 Bytes
3519dec
 
 
 
 
 
 
 
 
 
 
9244761
3519dec
 
 
 
3397572
3519dec
 
 
3397572
3519dec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
04a6d22
3519dec
 
 
 
 
8df44fc
3519dec
8df44fc
 
 
3519dec
8df44fc
 
 
3519dec
3397572
 
3519dec
3397572
 
3519dec
3397572
 
3519dec
3397572
3519dec
 
8df44fc
3397572
 
8df44fc
3397572
8df44fc
 
 
3519dec
3397572
 
 
 
3519dec
 
 
8df44fc
3519dec
04a6d22
 
 
3397572
04a6d22
69c49d3
04a6d22
 
 
 
 
 
 
 
3397572
04a6d22
 
3397572
 
3519dec
 
 
 
 
8df44fc
 
 
 
 
 
 
 
 
69c49d3
04a6d22
 
 
 
 
 
 
69c49d3
 
 
 
 
04a6d22
 
69c49d3
 
04a6d22
 
 
 
 
 
 
3519dec
 
 
 
 
 
 
 
 
 
3397572
 
3519dec
3397572
 
3519dec
 
 
 
3397572
3519dec
 
 
 
 
04a6d22
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import gradio as gr
import requests
from PIL import Image
from io import BytesIO
from tqdm import tqdm
import time

repo = "artificialguybr/TshirtDesignRedmond-V2"

def infer(color_prompt, Phone_type_prompt, design_prompt):
    prompt = (
        f"A single vertical {color_prompt} colored {Phone_type_prompt} back cover featuring a bold {design_prompt} design on the front, hanging on the plain wall. The soft light and shadows, creating a striking contrast against the minimal background, evoking modern sophistication.")
    full_prompt = f"{prompt}"

    print("Generating image with prompt:", full_prompt)
    api_url = f"https://api-inference.huggingface.co/models/{repo}"
    headers = {}
    payload = {
        "inputs": full_prompt,
        "parameters": {
            "negative_prompt": "(worst quality, low quality, lowres, oversaturated, grayscale, bad photo:1.4)",
            "num_inference_steps": 30,
            "scheduler": "DPMSolverMultistepScheduler"
        },
    }

    error_count = 0
    pbar = tqdm(total=None, desc="Loading model")
    while True:
        response = requests.post(api_url, headers=headers, json=payload)
        if response.status_code == 200:
            return Image.open(BytesIO(response.content))
        elif response.status_code == 503:
            time.sleep(1)
            pbar.update(1)
        elif response.status_code == 500 and error_count < 5:
            time.sleep(1)
            error_count += 1
        else:
            raise Exception(f"API Error: {response.status_code}")


custom_css = """
body {
    font-family: 'Poppins', sans-serif;
    margin: 0;
    padding: 0;
    transition: background-color 0.3s, color 0.3s;
}
.light-mode {
    background-color: #f8f9fa;
    color: #333;
}
.dark-mode {
    background-color: #333;
    color: #f8f9fa;
}
.gr-markdown-container {
    transition: color 0.3s;
}
.light-mode .gr-markdown-container {
    color: #333;
}
.dark-mode .gr-markdown-container {
    color: #f8f9fa;
}
textarea, input {
    padding: 10px;
    border-radius: 8px;
    border: 2px solid #ccc;
    margin-bottom: 10px;
    width: 100%;
}
textarea.dark-mode, input.dark-mode {
    background-color: #444;
    color: #f8f9fa;
    border: 2px solid #555;
}
textarea.light-mode, input.light-mode {
    background-color: #fff;
    color: #333;
}
.output-image {
    max-width: 100%;
    border-radius: 12px;
    margin-top: 20px;
}
.avatar-container {
    text-align: center;
    margin-bottom: 20px;
}
.avatar-container img {
    border-radius: 50%;
    width: 150px;
    height: 150px;
    box-shadow: 0px 4px 10px rgba(0, 0, 0, 0.3);
    animation: bounce 2s infinite;
}
@keyframes bounce {
    0%, 100% {
        transform: translateY(0);
    }
    50% {
        transform: translateY(-10px);
    }
}
"""

custom_js = """
<script>
document.addEventListener('DOMContentLoaded', function () {
    const toggleButton = document.createElement('button');
    toggleButton.textContent = 'Toggle Light/Dark Mode';
    toggleButton.style.marginBottom = '20px';
    toggleButton.onclick = () => {
        document.body.classList.toggle('dark-mode');
        document.body.classList.toggle('light-mode');
    };
    document.body.prepend(toggleButton);
    document.body.classList.add('light-mode'); // Default to light mode

    // Dynamic Welcome Message with AI avatar speech
    const welcomeMessage = document.createElement('div');
    welcomeMessage.classList.add('avatar-container');
    const avatarImg = document.createElement('img');
    avatarImg.src = 'https://i.postimg.cc/Qd9Gjc5Z/ai-girl-avatar.png'; // Replace with your AI girl avatar image
    welcomeMessage.appendChild(avatarImg);
    const messageText = document.createElement('h2');
    const currentHour = new Date().getHours();
    let greeting = "Welcome!";
    if (currentHour < 12) greeting = "Good Morning!";
    else if (currentHour < 18) greeting = "Good Afternoon!";
    else greeting = "Good Evening!";
    messageText.textContent = greeting + " I'm your AI assistant. Let's design something amazing!";
    welcomeMessage.appendChild(messageText);
    document.body.prepend(welcomeMessage);

    // Speech synthesis
    const speech = new SpeechSynthesisUtterance();
    speech.text = messageText.textContent;
    speech.pitch = 1;
    speech.rate = 1;
    speech.lang = 'en-US';
    window.speechSynthesis.speak(speech);
});
</script>
"""

with gr.Blocks(css=custom_css) as interface:
    gr.HTML(custom_js)
    gr.Markdown(
        """
        # **AI Phone Cover Designer**
        Create custom designs for your brand with AI. Specify color, style, and design details.
        """,
        elem_id="gr-markdown-container"  
    )
    with gr.Row(elem_id="responsive-row"):
        with gr.Column(scale=1, min_width=300):
            color_prompt = gr.Textbox(label="Color", placeholder="E.g., Red", elem_id="component-1")
            Back_cover_prompt = gr.Textbox(label="Mobile type", placeholder="E.g., iPhone, Samsung", elem_id="component-2")
            design_prompt = gr.Textbox(label="Design Details", placeholder="E.g., Bold stripes with geometric patterns", elem_id="component-3")
            generate_button = gr.Button("Generate Design")
        with gr.Column(scale=1, min_width=300):
            output = gr.Image(label="Generated Design", elem_id="output-image")

    generate_button.click(infer, inputs=[color_prompt, Back_cover_prompt, design_prompt], outputs=output)

# Launch the app
interface.launch(debug=True)