Image____ / app.py
gaur3009's picture
Update app.py
d6c9cce verified
raw
history blame
3.67 kB
import gradio as gr
import requests
import os
from PIL import Image
from io import BytesIO
from tqdm import tqdm
import time
# Defining the repository information and the trigger word
repo = "artificialguybr/TshirtDesignRedmond-V2"
# Function to generate image based on the prompt
def infer(color_prompt, dress_type_prompt, design_prompt, text):
# Build the full prompt
prompt = (
f"A single {color_prompt} colored {dress_type_prompt} with a bold, detailed {design_prompt} design printed on the front of the {dress_type_prompt}, hanging effortlessly on a plain wall, its simplicity transformed by bold. The simplicity of the {dress_type_prompt} is transformed by the vibrant design, while soft light casts dynamic shadows, adding depth and emphasizing the crisp lines of the artwork and {text} written on the {dress_type_prompt}. The contrast between the text and the calm background creates a striking visual. The image evokes a sense of modern sophistication, focusing solely on the {dress_type_prompt} and its design"
full_prompt = f"{prompt}"
print("Generating image with prompt:", full_prompt)
api_url = f"https://api-inference.huggingface.co/models/{repo}"
#token = os.getenv("API_TOKEN") # Uncomment and use your Hugging Face API token
headers = {
#"Authorization": f"Bearer {token}"
}
payload = {
"inputs": full_prompt,
"parameters": {
"negative_prompt": "(worst quality, low quality, normal quality, lowres, low details, oversaturated, undersaturated, overexposed, underexposed, grayscale, bw, bad photo, bad photography, bad art:1.4), (watermark, signature, text font, username, error, logo, words, letters, digits, autograph, trademark, name:1.2), (blur, blurry, grainy), morbid, ugly, asymmetrical, mutated malformed, mutilated, poorly lit, bad shadow, draft, cropped, out of frame, cut off, censored, jpeg artifacts, out of focus, glitch, duplicate, (airbrushed, cartoon, anime, semi-realistic, cgi, render, blender, digital art, manga, amateur:1.3), (3D ,3D Game, 3D Game Scene, 3D Character:1.1), (bad hands, bad anatomy, bad body, bad face, bad teeth, bad arms, bad legs, deformities:1.3)",
"num_inference_steps": 30,
"scheduler": "DPMSolverMultistepScheduler"
},
}
error_count = 0
pbar = tqdm(total=None, desc="Loading model")
while True:
print("Sending request to API...")
response = requests.post(api_url, headers=headers, json=payload)
print("API response status code:", response.status_code)
if response.status_code == 200:
print("Image generation successful!")
return Image.open(BytesIO(response.content))
elif response.status_code == 503:
time.sleep(1)
pbar.update(1)
elif response.status_code == 500 and error_count < 5:
time.sleep(1)
error_count += 1
else:
print("API Error:", response.status_code)
raise Exception(f"API Error: {response.status_code}")
# Gradio Interface
iface = gr.Interface(
fn=infer,
inputs=[
gr.Textbox(lines=1, placeholder="Color Prompt"), # color_prompt
gr.Textbox(lines=1, placeholder="Dress Type Prompt"), # dress_type_prompt
gr.Textbox(lines=2, placeholder="Design Prompt"), # design_prompt
gr.Textbox(lines=1, placeholder="Text (Optional)"), # text
],
outputs="image",
title="Make your Brand",
description="Generation of clothes",
examples=[["Red", "T-shirt", "Simple design", "Stylish Text"]]
)
print("Launching Gradio interface...")
iface.launch()