gatesla commited on
Commit
d888ff9
·
1 Parent(s): c0b5959

Closer with contours

Browse files
Files changed (2) hide show
  1. interpretter_notes.py +10 -1
  2. understand.py +73 -10
interpretter_notes.py CHANGED
@@ -130,4 +130,13 @@ array([[1907, 887],
130
  """
131
  >>> cv.boundingRect(c[0])
132
  (399, 340, 5, 3)
133
- """
 
 
 
 
 
 
 
 
 
 
130
  """
131
  >>> cv.boundingRect(c[0])
132
  (399, 340, 5, 3)
133
+
134
+ >>> get_coordinates_for_bb_simple(results["segmentation"], 1)
135
+ ((399, 300), (538, 392))
136
+ >>> make_new_bounding_box(cv.boundingRect(c[0]), cv.boundingRect(c[1]))
137
+ (399, 300, 140, 93)
138
+ >>> cv.boundingRect(c[0])
139
+ (399, 340, 5, 3)
140
+ >>> cv.boundingRect(c[1])
141
+ (409, 300, 130, 93)
142
+ """
understand.py CHANGED
@@ -103,9 +103,9 @@ def get_coordinates_for_bb_simple(map_to_use, label_id):
103
  else:
104
  mask = (map_to_use.numpy() == label_id)
105
 
106
- x, y = np.where(mask==True)
107
- x_max, x_min = max(x), min(x)
108
- y_max, y_min = max(y), min(y)
109
  return (x_min, y_min), (x_max, y_max)
110
 
111
  def make_simple_box(left_top, right_bottom, map_size):
@@ -123,7 +123,7 @@ def make_simple_box(left_top, right_bottom, map_size):
123
  plt.show()
124
 
125
 
126
- def test(map_to_use, label_id):
127
  """
128
  map_to_use: You have to pass in `results["segmentation"]`
129
  """
@@ -137,14 +137,15 @@ def test(map_to_use, label_id):
137
  left_x, top_y = lt
138
  right_x, bottom_y = rb
139
 
140
- mask[left_x:right_x, top_y] = .5
141
- mask[left_x:right_x, bottom_y] = .5
142
- mask[left_x, top_y:bottom_y] = .5
143
- mask[right_x, top_y:bottom_y] = .5
144
 
145
  visual_mask = (mask* 255).astype(np.uint8)
146
  visual_mask = Image.fromarray(visual_mask)
147
- plt.imshow(visual_mask)
 
148
  plt.show()
149
 
150
  def contour_map(map_to_use, label_id):
@@ -166,4 +167,66 @@ def contour_map(map_to_use, label_id):
166
 
167
  # Idea for determining if close
168
  # https://dsp.stackexchange.com/questions/2564/opencv-c-connect-nearby-contours-based-on-distance-between-them
169
- # Bing Search: cv determine if 2 contours belong together
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
103
  else:
104
  mask = (map_to_use.numpy() == label_id)
105
 
106
+ y_vals, x_vals = np.where(mask==True)
107
+ x_max, x_min = max(x_vals), min(x_vals)
108
+ y_max, y_min = max(y_vals), min(y_vals)
109
  return (x_min, y_min), (x_max, y_max)
110
 
111
  def make_simple_box(left_top, right_bottom, map_size):
 
123
  plt.show()
124
 
125
 
126
+ def map_bounding_box_draw(map_to_use, label_id, img_obj=TEST_IMAGE):
127
  """
128
  map_to_use: You have to pass in `results["segmentation"]`
129
  """
 
137
  left_x, top_y = lt
138
  right_x, bottom_y = rb
139
 
140
+ mask[top_y, left_x:right_x] = .5
141
+ mask[bottom_y, left_x:right_x] = .5
142
+ mask[ top_y:bottom_y, left_x] = .5
143
+ mask[ top_y:bottom_y, right_x] = .5
144
 
145
  visual_mask = (mask* 255).astype(np.uint8)
146
  visual_mask = Image.fromarray(visual_mask)
147
+ plt.imshow(img_obj)
148
+ plt.imshow(visual_mask, alpha=0.25)
149
  plt.show()
150
 
151
  def contour_map(map_to_use, label_id):
 
167
 
168
  # Idea for determining if close
169
  # https://dsp.stackexchange.com/questions/2564/opencv-c-connect-nearby-contours-based-on-distance-between-them
170
+ # Bing Search: cv determine if 2 contours belong together
171
+
172
+ def find_if_close(contour1, contour2, c_dist=50):
173
+ """
174
+ Source: https://dsp.stackexchange.com/questions/2564/opencv-c-connect-nearby-contours-based-on-distance-between-them
175
+
176
+ """
177
+ row1, row2 = contour1.shape[0], contour2.shape[0]
178
+ for i in range(row1):
179
+ for j in range(row2):
180
+ dist = np.linalg.norm(contour1[i]-contour2[j])
181
+ if abs(dist) < c_dist:
182
+ return True
183
+ elif i == (row1-1) and j == (row2-1):
184
+ return False
185
+
186
+
187
+ def make_new_bounding_box(bb1, bb2):
188
+ x1, y1, w1, h1 = bb1
189
+ x2, y2, w2, h2 = bb2
190
+ new_x = min(x1, x2)
191
+ new_y = min(y1, y2)
192
+ new_w = abs(max(x1+w1, x2+w2) - new_x)
193
+ new_h = abs(max(y1+h1, y2+h2) - new_y)
194
+
195
+ return (new_x, new_y, new_w, new_h)
196
+
197
+ def map_bounding_box_draw(map_to_use, label_id, img_obj=TEST_IMAGE, v="cv"):
198
+ """
199
+ map_to_use: You have to pass in `results["segmentation"]`
200
+ v: version of bounding box
201
+ cv, coord
202
+ """
203
+ if torch.cuda.is_available():
204
+ mask = (map_to_use.cpu().numpy() == label_id)
205
+ else:
206
+ mask = (map_to_use.numpy() == label_id)
207
+
208
+ if v == "cv":
209
+ c, v = contour_map(map_to_use, label_id)
210
+ x, y, w, h = make_new_bounding_box(cv.boundingRect(c[0]), cv.boundingRect(c[1]))
211
+ lt = (x, y)
212
+ rb = (x + w, y + h)
213
+ left_x, top_y = lt
214
+ right_x, bottom_y = rb
215
+ elif v == "coord":
216
+ lt, rb = get_coordinates_for_bb_simple(map_to_use, label_id)
217
+ left_x, top_y = lt
218
+ right_x, bottom_y = rb
219
+ else:
220
+ print(f"Not available `v` command {v}")
221
+ return
222
+
223
+ mask[top_y, left_x:right_x] = .5
224
+ mask[bottom_y, left_x:right_x] = .5
225
+ mask[ top_y:bottom_y, left_x] = .5
226
+ mask[ top_y:bottom_y, right_x] = .5
227
+
228
+ visual_mask = (mask* 255).astype(np.uint8)
229
+ visual_mask = Image.fromarray(visual_mask)
230
+ plt.imshow(img_obj)
231
+ plt.imshow(visual_mask, alpha=0.25)
232
+ plt.show(block=False)