Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import transformers
|
2 |
+
import torch
|
3 |
+
import gradio as gr
|
4 |
+
|
5 |
+
# Initialize the model and pipeline
|
6 |
+
model_name_or_path = "m42-health/Llama3-Med42-8B"
|
7 |
+
|
8 |
+
pipeline = transformers.pipeline(
|
9 |
+
"text-generation",
|
10 |
+
model=model_name_or_path,
|
11 |
+
torch_dtype=torch.bfloat16,
|
12 |
+
device_map="auto",
|
13 |
+
)
|
14 |
+
|
15 |
+
# Define the system message for the chatbot personality
|
16 |
+
system_message = {
|
17 |
+
"role": "system",
|
18 |
+
"content": (
|
19 |
+
"You are a helpful, respectful, and honest medical assistant. "
|
20 |
+
"You are a second version of Med42 developed by the AI team at M42, UAE. "
|
21 |
+
"Always answer as helpfully as possible, while being safe. "
|
22 |
+
"Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. "
|
23 |
+
"Please ensure that your responses are socially unbiased and positive in nature. "
|
24 |
+
"If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. "
|
25 |
+
"If you don’t know the answer to a question, please don’t share false information."
|
26 |
+
),
|
27 |
+
}
|
28 |
+
|
29 |
+
# Define stop tokens
|
30 |
+
stop_tokens = [
|
31 |
+
pipeline.tokenizer.eos_token_id,
|
32 |
+
pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>"),
|
33 |
+
]
|
34 |
+
|
35 |
+
# Initialize the conversation history
|
36 |
+
conversation_history = [system_message]
|
37 |
+
|
38 |
+
def chat_with_model(user_input):
|
39 |
+
# Append user message to conversation history
|
40 |
+
conversation_history.append({"role": "user", "content": user_input})
|
41 |
+
|
42 |
+
# Format the conversation for input to the model
|
43 |
+
prompt = pipeline.tokenizer.apply_chat_template(
|
44 |
+
conversation_history, tokenize=False, add_generation_prompt=False
|
45 |
+
)
|
46 |
+
|
47 |
+
# Generate response
|
48 |
+
outputs = pipeline(
|
49 |
+
prompt,
|
50 |
+
max_new_tokens=512,
|
51 |
+
eos_token_id=stop_tokens,
|
52 |
+
do_sample=True,
|
53 |
+
temperature=0.4,
|
54 |
+
top_k=150,
|
55 |
+
top_p=0.75,
|
56 |
+
)
|
57 |
+
|
58 |
+
# Extract the generated response (the part after the prompt)
|
59 |
+
generated_text = outputs[0]["generated_text"][len(prompt):]
|
60 |
+
|
61 |
+
# Append the assistant's response to the conversation history
|
62 |
+
conversation_history.append({"role": "assistant", "content": generated_text})
|
63 |
+
|
64 |
+
return generated_text.strip()
|
65 |
+
|
66 |
+
# Create Gradio interface
|
67 |
+
iface = gr.Interface(
|
68 |
+
fn=chat_with_model,
|
69 |
+
inputs="text",
|
70 |
+
outputs="text",
|
71 |
+
title="Med42 Medical Assistant",
|
72 |
+
description="Ask anything about medicine!",
|
73 |
+
)
|
74 |
+
|
75 |
+
# Launch the app
|
76 |
+
iface.launch()
|