Spaces:
				
			
			
	
			
			
		Sleeping
		
	
	
	
			
			
	
	
	
	
		
		
		Sleeping
		
	
		baptiste.bernard
		
	commited on
		
		
					Commit 
							
							·
						
						d79eb5f
	
1
								Parent(s):
							
							b374d39
								
add RAG and update README
Browse files
    	
        README.md
    CHANGED
    
    | @@ -23,9 +23,6 @@ Gaia Chat est un exemple de chatbot utilisant [Gradio](https://gradio.app), [`hu | |
| 23 | 
             
            ## Prérequis
         | 
| 24 |  | 
| 25 | 
             
            - Python 3.6 ou supérieur
         | 
| 26 | 
            -
            - Gradio
         | 
| 27 | 
            -
            - Chardet
         | 
| 28 | 
            -
             | 
| 29 |  | 
| 30 | 
             
            ## Installation
         | 
| 31 |  | 
| @@ -33,10 +30,6 @@ Gaia Chat est un exemple de chatbot utilisant [Gradio](https://gradio.app), [`hu | |
| 33 |  | 
| 34 | 
             
            Assurez-vous que Python est installé. 
         | 
| 35 |  | 
| 36 | 
            -
            ```sh
         | 
| 37 | 
            -
            python --version
         | 
| 38 | 
            -
            ```
         | 
| 39 | 
            -
             | 
| 40 | 
             
            1. Rendez-vous sur le site officiel de Python : [https://www.python.org/downloads/](https://www.python.org/downloads/)
         | 
| 41 | 
             
            2. Vérifiez l’installation avec la commande :
         | 
| 42 | 
             
               ```sh
         | 
| @@ -56,11 +49,20 @@ source .venv/bin/activate | |
| 56 |  | 
| 57 | 
             
            pip install -r requirements.txt
         | 
| 58 | 
             
            ```
         | 
| 59 | 
            -
            ###  | 
| 60 |  | 
| 61 | 
             
            Rendez-vous sur votre profil Hugging Face pour genenez votre Access Token : [https://huggingface.co/settings/tokens](https://huggingface.co/settings/tokens)
         | 
| 62 |  | 
| 63 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 64 |  | 
| 65 | 
             
            Exécutez la commande suivante pour démarrer Gaia Chat :
         | 
| 66 |  | 
| @@ -84,11 +86,9 @@ Une fois l'application lancée, ouvrez votre navigateur et accédez à l'URL ind | |
| 84 | 
             
            Gaia Chat is an example chatbot using [Gradio](https://gradio.app), [`huggingface_hub`](https://huggingface.co/docs/huggingface_hub/v0.22.2/en/index), and l '[Hugging Face Inference API](https://huggingface.co/docs/api-inference/index). This project shows how to create an interactive chatbot using these tools.
         | 
| 85 |  | 
| 86 |  | 
| 87 | 
            -
            ##  | 
| 88 |  | 
| 89 | 
             
            - Python 3.6
         | 
| 90 | 
            -
            - Gradio
         | 
| 91 | 
            -
            - Chardet
         | 
| 92 |  | 
| 93 | 
             
            ## Facilities
         | 
| 94 |  | 
| @@ -96,10 +96,6 @@ Gaia Chat is an example chatbot using [Gradio](https://gradio.app), [`huggingfac | |
| 96 |  | 
| 97 | 
             
            Make sure Python is installed.
         | 
| 98 |  | 
| 99 | 
            -
            ```sh
         | 
| 100 | 
            -
            python --version
         | 
| 101 | 
            -
            ```
         | 
| 102 | 
            -
             | 
| 103 | 
             
            1. Go to the official Python website: [https://www.python.org/downloads/](https://www.python.org/downloads/)
         | 
| 104 | 
             
            2. Verify the installation with the command:
         | 
| 105 | 
             
            ```sh
         | 
| @@ -118,11 +114,19 @@ source .venv/bin/activate | |
| 118 | 
             
            pip install -r requirements.txt
         | 
| 119 | 
             
            ```
         | 
| 120 |  | 
| 121 | 
            -
            ###  | 
| 122 |  | 
| 123 | 
             
            Go to your Hugging Face profile to generate your access token: [https://huggingface.co/settings/tokens](https://huggingface.co/settings/tokens)
         | 
| 124 |  | 
| 125 | 
            -
            ###  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 126 |  | 
| 127 | 
             
            Run the following command to start Gaia Chat:
         | 
| 128 |  | 
|  | |
| 23 | 
             
            ## Prérequis
         | 
| 24 |  | 
| 25 | 
             
            - Python 3.6 ou supérieur
         | 
|  | |
|  | |
|  | |
| 26 |  | 
| 27 | 
             
            ## Installation
         | 
| 28 |  | 
|  | |
| 30 |  | 
| 31 | 
             
            Assurez-vous que Python est installé. 
         | 
| 32 |  | 
|  | |
|  | |
|  | |
|  | |
| 33 | 
             
            1. Rendez-vous sur le site officiel de Python : [https://www.python.org/downloads/](https://www.python.org/downloads/)
         | 
| 34 | 
             
            2. Vérifiez l’installation avec la commande :
         | 
| 35 | 
             
               ```sh
         | 
|  | |
| 49 |  | 
| 50 | 
             
            pip install -r requirements.txt
         | 
| 51 | 
             
            ```
         | 
| 52 | 
            +
            ### 4. Gener un Access token sur Hugging Face
         | 
| 53 |  | 
| 54 | 
             
            Rendez-vous sur votre profil Hugging Face pour genenez votre Access Token : [https://huggingface.co/settings/tokens](https://huggingface.co/settings/tokens)
         | 
| 55 |  | 
| 56 | 
            +
             | 
| 57 | 
            +
            ### 5. Créer et configurer le fichier `.env`
         | 
| 58 | 
            +
             | 
| 59 | 
            +
            1. Créer le fichier `.env` :  
         | 
| 60 | 
            +
               ```sh
         | 
| 61 | 
            +
               echo HFTOKEN="votre_token_ici" > .env
         | 
| 62 | 
            +
               ```
         | 
| 63 | 
            +
            2. Ajouter le token que vous avez créé précédemment dans votre fichier `.env`.
         | 
| 64 | 
            +
             | 
| 65 | 
            +
            ### 6. Lancer l'application
         | 
| 66 |  | 
| 67 | 
             
            Exécutez la commande suivante pour démarrer Gaia Chat :
         | 
| 68 |  | 
|  | |
| 86 | 
             
            Gaia Chat is an example chatbot using [Gradio](https://gradio.app), [`huggingface_hub`](https://huggingface.co/docs/huggingface_hub/v0.22.2/en/index), and l '[Hugging Face Inference API](https://huggingface.co/docs/api-inference/index). This project shows how to create an interactive chatbot using these tools.
         | 
| 87 |  | 
| 88 |  | 
| 89 | 
            +
            ## Prerequisites
         | 
| 90 |  | 
| 91 | 
             
            - Python 3.6
         | 
|  | |
|  | |
| 92 |  | 
| 93 | 
             
            ## Facilities
         | 
| 94 |  | 
|  | |
| 96 |  | 
| 97 | 
             
            Make sure Python is installed.
         | 
| 98 |  | 
|  | |
|  | |
|  | |
|  | |
| 99 | 
             
            1. Go to the official Python website: [https://www.python.org/downloads/](https://www.python.org/downloads/)
         | 
| 100 | 
             
            2. Verify the installation with the command:
         | 
| 101 | 
             
            ```sh
         | 
|  | |
| 114 | 
             
            pip install -r requirements.txt
         | 
| 115 | 
             
            ```
         | 
| 116 |  | 
| 117 | 
            +
            ### 4. Generate Access Token on Hugging Face
         | 
| 118 |  | 
| 119 | 
             
            Go to your Hugging Face profile to generate your access token: [https://huggingface.co/settings/tokens](https://huggingface.co/settings/tokens)
         | 
| 120 |  | 
| 121 | 
            +
            ### 5. Create and configure the `.env` File  
         | 
| 122 | 
            +
             | 
| 123 | 
            +
            1. Create the `.env` file:  
         | 
| 124 | 
            +
               ```sh
         | 
| 125 | 
            +
               echo HFTOKEN="your_token_here" > .env
         | 
| 126 | 
            +
               ```  
         | 
| 127 | 
            +
            2. Add the token you created earlier to your `.env` file.
         | 
| 128 | 
            +
             | 
| 129 | 
            +
            ### 6. Launch the application
         | 
| 130 |  | 
| 131 | 
             
            Run the following command to start Gaia Chat:
         | 
| 132 |  | 
    	
        app.py
    CHANGED
    
    | @@ -1,8 +1,7 @@ | |
| 1 | 
             
            import os
         | 
| 2 | 
            -
            import sys
         | 
| 3 | 
             
            from dotenv import load_dotenv
         | 
| 4 | 
             
            import gradio as gr
         | 
| 5 | 
            -
            from huggingface_hub import InferenceClient
         | 
| 6 | 
             
            from langchain_huggingface import HuggingFaceEmbeddings
         | 
| 7 | 
             
            from langchain.text_splitter import RecursiveCharacterTextSplitter
         | 
| 8 | 
             
            from langchain_community.vectorstores import FAISS
         | 
| @@ -10,159 +9,131 @@ from langchain_community.document_loaders import PyPDFLoader | |
| 10 | 
             
            from langchain.schema import Document
         | 
| 11 |  | 
| 12 | 
             
            load_dotenv()
         | 
| 13 | 
            -
            hftoken = os. | 
| 14 |  | 
| 15 | 
            -
             | 
| 16 | 
            -
            from huggingface_hub import login
         | 
| 17 | 
             
            login(token=hftoken)
         | 
| 18 |  | 
| 19 | 
             
            client = InferenceClient("HuggingFaceH4/zephyr-7b-beta", token=hftoken)
         | 
| 20 | 
            -
             | 
| 21 | 
            -
            # model_kwargs = {'device': 'cpu'}
         | 
| 22 | 
            -
            # encode_kwargs = {'normalize_embeddings': False}
         | 
| 23 | 
            -
            model_name="sentence-transformers/all-MiniLM-L6-v2"
         | 
| 24 | 
            -
             | 
| 25 | 
            -
            embeddings = HuggingFaceEmbeddings(
         | 
| 26 | 
            -
                model_name=model_name
         | 
| 27 | 
            -
                # model_kwargs=model_kwargs,
         | 
| 28 | 
            -
                # encode_kwargs=encode_kwargs
         | 
| 29 | 
            -
            )
         | 
| 30 |  | 
|  | |
| 31 |  | 
| 32 | 
             
            def extract_text_from_file(file_path):
         | 
| 33 | 
             
                """Extrait le texte d'un fichier PDF ou TXT."""
         | 
| 34 | 
             
                try:
         | 
| 35 | 
            -
                     | 
| 36 | 
            -
             | 
| 37 | 
            -
                    if file_extension == ".pdf":
         | 
| 38 | 
             
                        loader = PyPDFLoader(file_path)
         | 
| 39 | 
             
                        pages = loader.load()
         | 
| 40 | 
            -
                         | 
| 41 | 
            -
                    elif  | 
| 42 | 
             
                        with open(file_path, "r", encoding="utf-8") as file:
         | 
| 43 | 
            -
                             | 
| 44 | 
            -
                        docs = [Document(page_content=text)]
         | 
| 45 | 
             
                    else:
         | 
| 46 | 
            -
                        return None | 
| 47 | 
            -
             | 
| 48 | 
            -
                    return docs, None
         | 
| 49 | 
             
                except Exception as e:
         | 
| 50 | 
            -
                     | 
|  | |
| 51 |  | 
| 52 | 
             
            def embed_documents(file):
         | 
| 53 | 
            -
                """ | 
| 54 | 
             
                global vector_store
         | 
| 55 | 
            -
             | 
| 56 | 
            -
                 | 
| 57 | 
            -
             | 
| 58 | 
            -
             | 
| 59 | 
            -
             | 
| 60 | 
             
                text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100)
         | 
| 61 | 
             
                documents = text_splitter.split_documents(docs)
         | 
| 62 |  | 
| 63 | 
             
                if documents:
         | 
| 64 | 
             
                    vector_store = FAISS.from_documents(documents, embeddings)
         | 
| 65 | 
            -
             | 
| 66 | 
            -
                    full_text = "\n".join([doc.page_content for doc in documents])
         | 
| 67 | 
            -
                    summary = summarize_text(full_text)
         | 
| 68 | 
            -
                    return f"✅ Document indexé avec succès !\n\n📌 **Résumé du fichier** :\n{summary}"
         | 
| 69 | 
             
                else:
         | 
| 70 | 
            -
                    return "❌ Aucun texte  | 
| 71 | 
            -
             | 
| 72 | 
            -
            def summarize_text(text):
         | 
| 73 | 
            -
                """Utilise le modèle HF pour générer un résumé du document."""
         | 
| 74 | 
            -
                messages = [{"role": "system", "content": "Résume ce texte en quelques phrases :"}, {"role": "user", "content": text}]
         | 
| 75 | 
            -
                
         | 
| 76 | 
            -
                response = client.chat_completion(messages, max_tokens=200, temperature=0.5)
         | 
| 77 | 
            -
                return response.choices[0].message["content"]
         | 
| 78 |  | 
| 79 | 
             
            def query_faiss(query):
         | 
| 80 | 
            -
                """ | 
|  | |
| 81 | 
             
                if vector_store is None:
         | 
| 82 | 
            -
                    return  | 
| 83 | 
            -
             | 
| 84 | 
             
                retriever = vector_store.as_retriever(search_kwargs={"k": 3})
         | 
| 85 | 
             
                results = retriever.get_relevant_documents(query)
         | 
| 86 |  | 
| 87 | 
            -
                if  | 
| 88 | 
            -
                     | 
| 89 | 
            -
             | 
| 90 | 
            -
                 | 
| 91 | 
            -
             | 
| 92 | 
            -
             | 
| 93 | 
            -
             | 
| 94 | 
            -
                messages = [
         | 
| 95 | 
            -
                    {"role": "system", "content": "Réponds à la question en utilisant les informations suivantes sans les copier mot pour mot."},
         | 
| 96 | 
            -
                    {"role": "user", "content": f"Contexte : {context}\nQuestion : {query}"}
         | 
| 97 | 
            -
                ]
         | 
| 98 |  | 
| 99 | 
            -
             | 
| 100 | 
            -
                 | 
| 101 | 
            -
             | 
| 102 | 
            -
             | 
| 103 | 
            -
             | 
| 104 | 
            -
            def respond(message, history, system_message, max_tokens, temperature, top_p, file=None):
         | 
| 105 | 
            -
                """Gère la réponse du chatbot avec FAISS et Hugging Face."""
         | 
| 106 | 
             
                global vector_store
         | 
| 107 | 
            -
             | 
| 108 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 109 |  | 
| 110 | 
             
                for val in history:
         | 
| 111 | 
            -
                    if val[0]:
         | 
| 112 | 
            -
             | 
| 113 | 
            -
                    if val[1]:
         | 
| 114 | 
            -
                        messages.append({"role": "assistant", "content": val[1]})
         | 
| 115 |  | 
| 116 | 
            -
                
         | 
| 117 | 
            -
                if file:
         | 
| 118 | 
            -
                    response = embed_documents(file)
         | 
| 119 | 
            -
                    yield response
         | 
| 120 | 
            -
                    return
         | 
| 121 | 
            -
             | 
| 122 | 
            -
                context = query_faiss(message)
         | 
| 123 | 
            -
                if "❌" not in context:
         | 
| 124 | 
             
                    messages.append({"role": "user", "content": f"Contexte : {context}\nQuestion : {message}"})
         | 
| 125 | 
             
                else:
         | 
| 126 | 
            -
             | 
| 127 | 
            -
                    
         | 
| 128 | 
             
                    messages.append({"role": "user", "content": message})
         | 
| 129 |  | 
| 130 | 
            -
             | 
| 131 | 
            -
             | 
| 132 | 
            -
             | 
| 133 | 
             
                response = ""
         | 
| 134 | 
            -
                 | 
| 135 | 
            -
                     | 
| 136 | 
            -
             | 
| 137 | 
            -
             | 
| 138 | 
            -
             | 
| 139 | 
            -
             | 
| 140 | 
            -
             | 
| 141 | 
            -
                     | 
| 142 | 
            -
             | 
| 143 | 
            -
                     | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 144 |  | 
| 145 | 
             
            with gr.Blocks(theme=gr.themes.Soft()) as demo:
         | 
| 146 | 
            -
                gr. | 
| 147 | 
            -
             | 
| 148 |  | 
|  | |
|  | |
|  | |
| 149 | 
             
                with gr.Row():
         | 
| 150 | 
             
                    with gr.Column():
         | 
| 151 | 
             
                        gr.Markdown("## ⚙️ Paramètres")
         | 
| 152 | 
            -
                        with gr.Accordion(" | 
| 153 | 
            -
                            system_message = gr.Textbox(value=" | 
| 154 | 
            -
                            max_tokens = gr.Slider( | 
| 155 | 
            -
                            temperature = gr.Slider( | 
| 156 | 
            -
                            top_p = gr.Slider( | 
| 157 | 
            -
             | 
| 158 | 
            -
                         | 
| 159 | 
            -
                         | 
| 160 | 
            -
                        file_upload. | 
|  | |
| 161 |  | 
| 162 | 
             
                    with gr.Column():
         | 
| 163 | 
             
                        gr.Markdown("## 💬 Chat")
         | 
| 164 | 
             
                        chatbot = gr.ChatInterface(
         | 
| 165 | 
            -
                             | 
| 166 | 
             
                            additional_inputs=[system_message, max_tokens, temperature, top_p, file_upload],
         | 
| 167 | 
             
                        )
         | 
| 168 |  | 
|  | |
| 1 | 
             
            import os
         | 
|  | |
| 2 | 
             
            from dotenv import load_dotenv
         | 
| 3 | 
             
            import gradio as gr
         | 
| 4 | 
            +
            from huggingface_hub import InferenceClient, login
         | 
| 5 | 
             
            from langchain_huggingface import HuggingFaceEmbeddings
         | 
| 6 | 
             
            from langchain.text_splitter import RecursiveCharacterTextSplitter
         | 
| 7 | 
             
            from langchain_community.vectorstores import FAISS
         | 
|  | |
| 9 | 
             
            from langchain.schema import Document
         | 
| 10 |  | 
| 11 | 
             
            load_dotenv()
         | 
| 12 | 
            +
            hftoken = os.getenv("HFTOKEN")
         | 
| 13 |  | 
|  | |
|  | |
| 14 | 
             
            login(token=hftoken)
         | 
| 15 |  | 
| 16 | 
             
            client = InferenceClient("HuggingFaceH4/zephyr-7b-beta", token=hftoken)
         | 
| 17 | 
            +
            embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 18 |  | 
| 19 | 
            +
            vector_store = None
         | 
| 20 |  | 
| 21 | 
             
            def extract_text_from_file(file_path):
         | 
| 22 | 
             
                """Extrait le texte d'un fichier PDF ou TXT."""
         | 
| 23 | 
             
                try:
         | 
| 24 | 
            +
                    ext = os.path.splitext(file_path)[1].lower()
         | 
| 25 | 
            +
                    if ext == ".pdf":
         | 
|  | |
| 26 | 
             
                        loader = PyPDFLoader(file_path)
         | 
| 27 | 
             
                        pages = loader.load()
         | 
| 28 | 
            +
                        return [Document(page_content=page.page_content) for page in pages]
         | 
| 29 | 
            +
                    elif ext == ".txt":
         | 
| 30 | 
             
                        with open(file_path, "r", encoding="utf-8") as file:
         | 
| 31 | 
            +
                            return [Document(page_content=file.read())]
         | 
|  | |
| 32 | 
             
                    else:
         | 
| 33 | 
            +
                        return None
         | 
|  | |
|  | |
| 34 | 
             
                except Exception as e:
         | 
| 35 | 
            +
                    print(f"Erreur extraction : {e}")
         | 
| 36 | 
            +
                    return None
         | 
| 37 |  | 
| 38 | 
             
            def embed_documents(file):
         | 
| 39 | 
            +
                """Charge un document dans FAISS pour la recherche vectorielle."""
         | 
| 40 | 
             
                global vector_store
         | 
| 41 | 
            +
                docs = extract_text_from_file(file.name)
         | 
| 42 | 
            +
                if not docs:
         | 
| 43 | 
            +
                    return "❌ Erreur lors du chargement du fichier."
         | 
| 44 | 
            +
                
         | 
|  | |
| 45 | 
             
                text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100)
         | 
| 46 | 
             
                documents = text_splitter.split_documents(docs)
         | 
| 47 |  | 
| 48 | 
             
                if documents:
         | 
| 49 | 
             
                    vector_store = FAISS.from_documents(documents, embeddings)
         | 
| 50 | 
            +
                    return "📁 Document chargé et indexé ! Posez-moi une question."
         | 
|  | |
|  | |
|  | |
| 51 | 
             
                else:
         | 
| 52 | 
            +
                    return "❌ Aucun texte valide extrait du fichier."
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 53 |  | 
| 54 | 
             
            def query_faiss(query):
         | 
| 55 | 
            +
                """Effectue une recherche dans FAISS et génère une réponse."""
         | 
| 56 | 
            +
                global vector_store
         | 
| 57 | 
             
                if vector_store is None:
         | 
| 58 | 
            +
                    return None
         | 
| 59 | 
            +
                
         | 
| 60 | 
             
                retriever = vector_store.as_retriever(search_kwargs={"k": 3})
         | 
| 61 | 
             
                results = retriever.get_relevant_documents(query)
         | 
| 62 |  | 
| 63 | 
            +
                if results:
         | 
| 64 | 
            +
                    context = "\n".join([doc.page_content for doc in results])
         | 
| 65 | 
            +
                    return context
         | 
| 66 | 
            +
                return None
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 67 |  | 
| 68 | 
            +
            def chatbot_response(message, history, system_message, max_tokens, temperature, top_p, file=None):
         | 
| 69 | 
            +
                """Gère les réponses du chatbot avec ou sans document."""
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
| 70 | 
             
                global vector_store
         | 
| 71 | 
            +
                if file:
         | 
| 72 | 
            +
                    status = embed_documents(file)
         | 
| 73 | 
            +
                    if "❌" in status:
         | 
| 74 | 
            +
                        yield status
         | 
| 75 | 
            +
                        return
         | 
| 76 | 
            +
                    yield status
         | 
| 77 | 
            +
             | 
| 78 | 
            +
                context = query_faiss(message) if vector_store else None
         | 
| 79 | 
            +
                messages = [{"role": "system", "content": system_message + " Réponds uniquement en français."}]
         | 
| 80 |  | 
| 81 | 
             
                for val in history:
         | 
| 82 | 
            +
                    if val[0]: messages.append({"role": "user", "content": val[0]})
         | 
| 83 | 
            +
                    if val[1]: messages.append({"role": "assistant", "content": val[1]})
         | 
|  | |
|  | |
| 84 |  | 
| 85 | 
            +
                if context:
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 86 | 
             
                    messages.append({"role": "user", "content": f"Contexte : {context}\nQuestion : {message}"})
         | 
| 87 | 
             
                else:
         | 
|  | |
|  | |
| 88 | 
             
                    messages.append({"role": "user", "content": message})
         | 
| 89 |  | 
|  | |
|  | |
|  | |
| 90 | 
             
                response = ""
         | 
| 91 | 
            +
                try:
         | 
| 92 | 
            +
                    response_stream = client.chat_completion(
         | 
| 93 | 
            +
                        messages,
         | 
| 94 | 
            +
                        max_tokens=max_tokens,
         | 
| 95 | 
            +
                        stream=True,
         | 
| 96 | 
            +
                        temperature=temperature,
         | 
| 97 | 
            +
                        top_p=top_p,
         | 
| 98 | 
            +
                    )
         | 
| 99 | 
            +
             | 
| 100 | 
            +
                    for msg in response_stream:
         | 
| 101 | 
            +
                        if msg.choices and msg.choices[0].delta and msg.choices[0].delta.content:
         | 
| 102 | 
            +
                            token = msg.choices[0].delta.content
         | 
| 103 | 
            +
                            response += token
         | 
| 104 | 
            +
                            yield response
         | 
| 105 | 
            +
             | 
| 106 | 
            +
                    if not response.strip():
         | 
| 107 | 
            +
                        yield "Je ne sais pas. Peux-tu reformuler ?"
         | 
| 108 | 
            +
                except Exception as e:
         | 
| 109 | 
            +
                    print(f"Erreur réponse : {e}")
         | 
| 110 | 
            +
                    yield "❌ Une erreur est survenue lors de la génération de la réponse."
         | 
| 111 |  | 
| 112 | 
             
            with gr.Blocks(theme=gr.themes.Soft()) as demo:
         | 
| 113 | 
            +
                with gr.Row():
         | 
| 114 | 
            +
                    gr.Image("logo-gaia.png", width=300, height=300, show_label=False, show_download_button=False)
         | 
| 115 |  | 
| 116 | 
            +
                with gr.Row():
         | 
| 117 | 
            +
                    gr.Markdown("<h1 style='text-align: center;'>📚 Chatbot GAIA</h1>")
         | 
| 118 | 
            +
                
         | 
| 119 | 
             
                with gr.Row():
         | 
| 120 | 
             
                    with gr.Column():
         | 
| 121 | 
             
                        gr.Markdown("## ⚙️ Paramètres")
         | 
| 122 | 
            +
                        with gr.Accordion(" Paramètres avancés", open=False):
         | 
| 123 | 
            +
                            system_message = gr.Textbox(value="Réponds de façon simple et claire.", label="Message système")
         | 
| 124 | 
            +
                            max_tokens = gr.Slider(1, 2048, value=800, step=1, label="Max tokens")  
         | 
| 125 | 
            +
                            temperature = gr.Slider(0.1, 4.0, value=0.3, step=0.1, label="Température")
         | 
| 126 | 
            +
                            top_p = gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top-p")
         | 
| 127 | 
            +
                        
         | 
| 128 | 
            +
                        
         | 
| 129 | 
            +
                        gr.Markdown("## 📂 Télécharger un fichier")
         | 
| 130 | 
            +
                        file_upload = gr.File(label="Téléchargez un PDF ou TXT", file_types=[".pdf", ".txt"], type="filepath")
         | 
| 131 | 
            +
                        file_upload.change(embed_documents, inputs=file_upload, outputs=[])
         | 
| 132 |  | 
| 133 | 
             
                    with gr.Column():
         | 
| 134 | 
             
                        gr.Markdown("## 💬 Chat")
         | 
| 135 | 
             
                        chatbot = gr.ChatInterface(
         | 
| 136 | 
            +
                            chatbot_response,
         | 
| 137 | 
             
                            additional_inputs=[system_message, max_tokens, temperature, top_p, file_upload],
         | 
| 138 | 
             
                        )
         | 
| 139 |  | 
