summarizer system prompt refactoring
Browse files
src/know_lang_bot/summarizer/summarizer.py
CHANGED
@@ -30,15 +30,22 @@ class CodeSummarizer:
|
|
30 |
def _init_agent(self):
|
31 |
"""Initialize the LLM agent with configuration"""
|
32 |
system_prompt = """
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
-
|
41 |
-
|
42 |
|
43 |
self.agent = Agent(
|
44 |
f"{self.config.llm.model_provider}:{self.config.llm.model_name}",
|
@@ -83,7 +90,7 @@ class CodeSummarizer:
|
|
83 |
|
84 |
{f'Docstring: {chunk.docstring}' if chunk.docstring else ''}
|
85 |
|
86 |
-
Provide a concise summary
|
87 |
"""
|
88 |
|
89 |
result = await self.agent.run(prompt)
|
|
|
30 |
def _init_agent(self):
|
31 |
"""Initialize the LLM agent with configuration"""
|
32 |
system_prompt = """
|
33 |
+
You are an expert code analyzer. Your task is to analyze code chunks and provide clear,
|
34 |
+
concise summaries. Focus on following points:
|
35 |
+
1. The main purpose and functionality
|
36 |
+
- Use precise technical terms
|
37 |
+
- Preserve class/function/variable names exactly
|
38 |
+
- State the primary purpose
|
39 |
+
2. Key implementation details
|
40 |
+
- Focus on key algorithms, patterns, or design choices
|
41 |
+
- Highlight important method signatures and interfaces
|
42 |
+
3. Any notable dependencies or requirements
|
43 |
+
-Reference related classes/functions by exact name
|
44 |
+
- List external dependencies
|
45 |
+
- Note any inherited or implemented interfaces
|
46 |
|
47 |
+
Provide a clean and concise summary.
|
48 |
+
"""
|
49 |
|
50 |
self.agent = Agent(
|
51 |
f"{self.config.llm.model_provider}:{self.config.llm.model_name}",
|
|
|
90 |
|
91 |
{f'Docstring: {chunk.docstring}' if chunk.docstring else ''}
|
92 |
|
93 |
+
Provide a concise summary.
|
94 |
"""
|
95 |
|
96 |
result = await self.agent.run(prompt)
|