gakim
commited on
Commit
·
a6fb103
1
Parent(s):
3f835a5
embedding migration script
Browse files
src/know_lang_bot/utils/migration/embedding_migrations.py
ADDED
@@ -0,0 +1,286 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import asyncio
|
2 |
+
import json
|
3 |
+
from pathlib import Path
|
4 |
+
import chromadb
|
5 |
+
from chromadb.errors import InvalidCollectionException
|
6 |
+
from rich.progress import Progress
|
7 |
+
from rich.console import Console
|
8 |
+
from typing import List, Dict, Any, Optional
|
9 |
+
import openai
|
10 |
+
from openai import OpenAI
|
11 |
+
from datetime import datetime
|
12 |
+
from know_lang_bot.config import AppConfig
|
13 |
+
from know_lang_bot.utils.fancy_log import FancyLogger
|
14 |
+
|
15 |
+
LOG = FancyLogger(__name__)
|
16 |
+
console = Console()
|
17 |
+
|
18 |
+
BATCH_SIZE = 2000 # Max items per batch
|
19 |
+
MAX_CHARS_PER_CHUNK = 10000 # Approximate 8k tokens limit (very rough estimate)
|
20 |
+
|
21 |
+
class BatchState:
|
22 |
+
"""Class to track batch processing state"""
|
23 |
+
def __init__(self, root_dir: Path):
|
24 |
+
self.root_dir = root_dir
|
25 |
+
self.batch_dir = root_dir / "batches"
|
26 |
+
self.results_dir = root_dir / "results"
|
27 |
+
self.metadata_dir = root_dir / "metadata"
|
28 |
+
|
29 |
+
# Create directories
|
30 |
+
for dir in [self.batch_dir, self.results_dir, self.metadata_dir]:
|
31 |
+
dir.mkdir(parents=True, exist_ok=True)
|
32 |
+
|
33 |
+
def save_batch_metadata(self, batch_id: str, metadata: Dict):
|
34 |
+
"""Save batch processing metadata"""
|
35 |
+
with open(self.metadata_dir / f"{batch_id}.json", "w") as f:
|
36 |
+
json.dump(metadata, f, indent=2)
|
37 |
+
|
38 |
+
def truncate_chunk(text: str, max_chars: int = MAX_CHARS_PER_CHUNK) -> str:
|
39 |
+
"""Truncate text to approximate token limit while preserving structure"""
|
40 |
+
if len(text) <= max_chars:
|
41 |
+
return text
|
42 |
+
|
43 |
+
# Split into CODE and SUMMARY sections
|
44 |
+
parts = text.split("\nSUMMARY:\n")
|
45 |
+
if len(parts) != 2:
|
46 |
+
# If structure not found, just truncate
|
47 |
+
return text[:max_chars]
|
48 |
+
|
49 |
+
code, summary = parts
|
50 |
+
|
51 |
+
# Calculate available space for each section (proportionally)
|
52 |
+
total_len = len(code) + len(summary)
|
53 |
+
code_ratio = len(code) / total_len
|
54 |
+
|
55 |
+
# Allocate characters proportionally
|
56 |
+
code_chars = int(max_chars * code_ratio)
|
57 |
+
summary_chars = max_chars - code_chars
|
58 |
+
|
59 |
+
truncated_code = code[:code_chars]
|
60 |
+
truncated_summary = summary[:summary_chars]
|
61 |
+
|
62 |
+
return f"{truncated_code}\nSUMMARY:\n{truncated_summary}"
|
63 |
+
|
64 |
+
async def prepare_batches(config: AppConfig, batch_state: BatchState) -> List[str]:
|
65 |
+
"""Prepare batch files from ChromaDB and return batch IDs"""
|
66 |
+
source_client = chromadb.PersistentClient(path=str(config.db.persist_directory))
|
67 |
+
source_collection = source_client.get_collection(name=config.db.collection_name)
|
68 |
+
|
69 |
+
# Get all documents
|
70 |
+
results = source_collection.get(include=['documents', 'metadatas' ])
|
71 |
+
|
72 |
+
if not results['ids']:
|
73 |
+
console.print("[red]No documents found in source collection!")
|
74 |
+
return
|
75 |
+
total_documents = len(results['ids'])
|
76 |
+
|
77 |
+
batch_ids = []
|
78 |
+
with Progress() as progress:
|
79 |
+
task = progress.add_task("Preparing batches...", total=total_documents)
|
80 |
+
|
81 |
+
current_batch = []
|
82 |
+
current_batch_ids = []
|
83 |
+
current_batch_num = 0
|
84 |
+
|
85 |
+
for i, (doc_id, doc, metadata) in enumerate(zip(
|
86 |
+
results['ids'],
|
87 |
+
results['documents'],
|
88 |
+
results['metadatas']
|
89 |
+
)):
|
90 |
+
# Truncate document if needed
|
91 |
+
truncated_doc = truncate_chunk(doc)
|
92 |
+
|
93 |
+
current_batch.append((doc_id, truncated_doc))
|
94 |
+
current_batch_ids.append(doc_id)
|
95 |
+
|
96 |
+
# Create batch file when size limit reached or at end
|
97 |
+
if len(current_batch) >= BATCH_SIZE or i == total_documents - 1:
|
98 |
+
batch_file = batch_state.batch_dir / f"batch_{current_batch_num}.jsonl"
|
99 |
+
|
100 |
+
with open(batch_file, 'w') as f:
|
101 |
+
for bid, bdoc in current_batch:
|
102 |
+
request = {
|
103 |
+
"custom_id": bid,
|
104 |
+
"method": "POST",
|
105 |
+
"url": "/v1/embeddings",
|
106 |
+
"body": {
|
107 |
+
"model": config.embedding.model_name,
|
108 |
+
"input": bdoc
|
109 |
+
}
|
110 |
+
}
|
111 |
+
f.write(json.dumps(request) + '\n')
|
112 |
+
|
113 |
+
# Save batch metadata
|
114 |
+
batch_metadata = {
|
115 |
+
"batch_id": f"batch_{current_batch_num}",
|
116 |
+
"created_at": datetime.now().isoformat(),
|
117 |
+
"document_ids": current_batch_ids,
|
118 |
+
"size": len(current_batch),
|
119 |
+
"status": "prepared"
|
120 |
+
}
|
121 |
+
batch_state.save_batch_metadata(f"batch_{current_batch_num}", batch_metadata)
|
122 |
+
|
123 |
+
batch_ids.append(f"batch_{current_batch_num}")
|
124 |
+
current_batch = []
|
125 |
+
current_batch_ids = []
|
126 |
+
current_batch_num += 1
|
127 |
+
|
128 |
+
progress.advance(task)
|
129 |
+
|
130 |
+
return batch_ids
|
131 |
+
|
132 |
+
async def submit_batches(batch_state: BatchState, batch_ids: List[str]):
|
133 |
+
"""Submit prepared batches to OpenAI"""
|
134 |
+
client = OpenAI()
|
135 |
+
|
136 |
+
with Progress() as progress:
|
137 |
+
task = progress.add_task("Submitting batches...", total=len(batch_ids))
|
138 |
+
|
139 |
+
for batch_id in batch_ids:
|
140 |
+
batch_file = batch_state.batch_dir / f"{batch_id}.jsonl"
|
141 |
+
|
142 |
+
# Upload batch file
|
143 |
+
file = client.files.create(
|
144 |
+
file=open(batch_file, "rb"),
|
145 |
+
purpose="batch"
|
146 |
+
)
|
147 |
+
|
148 |
+
# Create batch job
|
149 |
+
batch = client.batches.create(
|
150 |
+
input_file_id=file.id,
|
151 |
+
endpoint="/v1/embeddings",
|
152 |
+
completion_window="24h"
|
153 |
+
)
|
154 |
+
|
155 |
+
# Update metadata
|
156 |
+
with open(batch_state.metadata_dir / f"{batch_id}.json", "r") as f:
|
157 |
+
metadata = json.load(f)
|
158 |
+
|
159 |
+
metadata.update({
|
160 |
+
"openai_batch_id": batch.id,
|
161 |
+
"file_id": file.id,
|
162 |
+
"status": "submitted",
|
163 |
+
"submitted_at": datetime.now().isoformat()
|
164 |
+
})
|
165 |
+
|
166 |
+
batch_state.save_batch_metadata(batch_id, metadata)
|
167 |
+
progress.advance(task)
|
168 |
+
|
169 |
+
async def process_batch_results(
|
170 |
+
batch_state: BatchState,
|
171 |
+
config: AppConfig,
|
172 |
+
batch_ids: Optional[List[str]] = None
|
173 |
+
):
|
174 |
+
"""Process completed batches and store in new ChromaDB"""
|
175 |
+
client = OpenAI()
|
176 |
+
|
177 |
+
# Initialize target DB
|
178 |
+
target_path = Path(config.db.persist_directory).parent / "batch_embeddings_db"
|
179 |
+
target_path.mkdir(exist_ok=True)
|
180 |
+
target_client = chromadb.PersistentClient(path=str(target_path))
|
181 |
+
|
182 |
+
# Create or get collection
|
183 |
+
new_collection_name = f"{config.db.collection_name}_batch"
|
184 |
+
try:
|
185 |
+
target_collection = target_client.get_collection(name=new_collection_name)
|
186 |
+
console.print(f"[yellow]Collection {new_collection_name} exists, appending...")
|
187 |
+
except InvalidCollectionException:
|
188 |
+
target_collection = target_client.create_collection(
|
189 |
+
name=new_collection_name,
|
190 |
+
metadata={"hnsw:space": "cosine"}
|
191 |
+
)
|
192 |
+
|
193 |
+
# Process each batch
|
194 |
+
if batch_ids is None:
|
195 |
+
batch_ids = [f.stem for f in batch_state.metadata_dir.glob("*.json")]
|
196 |
+
|
197 |
+
with Progress() as progress:
|
198 |
+
task = progress.add_task("Processing results...", total=len(batch_ids))
|
199 |
+
|
200 |
+
for batch_id in batch_ids:
|
201 |
+
# Load batch metadata
|
202 |
+
with open(batch_state.metadata_dir / f"{batch_id}.json", "r") as f:
|
203 |
+
metadata = json.load(f)
|
204 |
+
|
205 |
+
if metadata["status"] != "submitted":
|
206 |
+
console.print(f"[yellow]Skipping {batch_id} - not submitted")
|
207 |
+
progress.advance(task)
|
208 |
+
continue
|
209 |
+
|
210 |
+
# Check batch status
|
211 |
+
batch_status = client.batches.retrieve(metadata["openai_batch_id"])
|
212 |
+
if batch_status.status != "completed":
|
213 |
+
console.print(f"[yellow]Batch {batch_id} not complete, status: {batch_status.status}")
|
214 |
+
progress.advance(task)
|
215 |
+
continue
|
216 |
+
|
217 |
+
# Download results
|
218 |
+
output_file = batch_state.results_dir / f"{batch_id}_output.jsonl"
|
219 |
+
response = client.files.content(batch_status.output_file_id)
|
220 |
+
with open(output_file, "wb") as f:
|
221 |
+
f.write(response.read())
|
222 |
+
|
223 |
+
# Process embeddings
|
224 |
+
source_client = chromadb.PersistentClient(path=str(config.db.persist_directory))
|
225 |
+
source_collection = source_client.get_collection(name=config.db.collection_name)
|
226 |
+
|
227 |
+
# Get original documents and metadata
|
228 |
+
results = source_collection.get(
|
229 |
+
ids=metadata["document_ids"],
|
230 |
+
include=['documents', 'metadatas']
|
231 |
+
)
|
232 |
+
|
233 |
+
# Process results file
|
234 |
+
embeddings = []
|
235 |
+
processed_ids = []
|
236 |
+
processed_docs = []
|
237 |
+
processed_metadatas = []
|
238 |
+
|
239 |
+
with open(output_file) as f:
|
240 |
+
for line in f:
|
241 |
+
result = json.loads(line)
|
242 |
+
if result["response"]["status_code"] == 200:
|
243 |
+
doc_idx = metadata["document_ids"].index(result["custom_id"])
|
244 |
+
|
245 |
+
embeddings.append(result["response"]["body"]["data"][0]["embedding"])
|
246 |
+
processed_ids.append(result["custom_id"])
|
247 |
+
processed_docs.append(results["documents"][doc_idx])
|
248 |
+
processed_metadatas.append(results["metadatas"][doc_idx])
|
249 |
+
|
250 |
+
# Add to new collection
|
251 |
+
if processed_ids:
|
252 |
+
target_collection.add(
|
253 |
+
embeddings=embeddings,
|
254 |
+
documents=processed_docs,
|
255 |
+
metadatas=processed_metadatas,
|
256 |
+
ids=processed_ids
|
257 |
+
)
|
258 |
+
|
259 |
+
# Update metadata
|
260 |
+
metadata.update({
|
261 |
+
"status": "processed",
|
262 |
+
"processed_at": datetime.now().isoformat(),
|
263 |
+
"processed_count": len(processed_ids)
|
264 |
+
})
|
265 |
+
batch_state.save_batch_metadata(batch_id, metadata)
|
266 |
+
|
267 |
+
progress.advance(task)
|
268 |
+
|
269 |
+
async def main():
|
270 |
+
config = AppConfig()
|
271 |
+
batch_state = BatchState(Path("embedding_migration"))
|
272 |
+
|
273 |
+
# Step 1: Prepare batches
|
274 |
+
console.print("[green]Step 1: Preparing batches...")
|
275 |
+
batch_ids = await prepare_batches(config, batch_state)
|
276 |
+
|
277 |
+
# # Step 2: Submit batches
|
278 |
+
console.print("\n[green]Step 2: Submitting batches...")
|
279 |
+
await submit_batches(batch_state, batch_ids)
|
280 |
+
|
281 |
+
# Step 3: Process results
|
282 |
+
console.print("\n[green]Step 3: Processing results...")
|
283 |
+
await process_batch_results(batch_state, config)
|
284 |
+
|
285 |
+
if __name__ == "__main__":
|
286 |
+
asyncio.run(main())
|