evaluation visualiation script
Browse files
src/know_lang_bot/evaluation/chatbot_evaluation_visualize.py
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
import json
|
3 |
+
import pandas as pd
|
4 |
+
from rich.console import Console
|
5 |
+
from rich.table import Table
|
6 |
+
from typing import List
|
7 |
+
from know_lang_bot.evaluation.chatbot_evaluation import EvalSummary
|
8 |
+
|
9 |
+
class ResultAnalyzer:
|
10 |
+
def __init__(self, base_dir: Path):
|
11 |
+
self.console = Console()
|
12 |
+
self.embedding_dir = base_dir / "embedding"
|
13 |
+
self.reranking_dir = base_dir / "embedding_reranking"
|
14 |
+
|
15 |
+
def load_results(self, file_path: Path) -> List[EvalSummary]:
|
16 |
+
"""Load evaluation results from JSON file"""
|
17 |
+
with open(file_path) as f:
|
18 |
+
obj_list = json.load(f)
|
19 |
+
return [EvalSummary.model_validate(obj) for obj in obj_list]
|
20 |
+
|
21 |
+
def create_dataframe(self, results: List[EvalSummary]) -> pd.DataFrame:
|
22 |
+
"""Convert results to pandas DataFrame with flattened metrics"""
|
23 |
+
rows = []
|
24 |
+
for result in results:
|
25 |
+
row = {
|
26 |
+
"evaluator_model": result.evaluator_model,
|
27 |
+
"question": result.case.question,
|
28 |
+
"difficulty": result.case.difficulty,
|
29 |
+
"chunk_relevance": result.eval_response.chunk_relevance,
|
30 |
+
"answer_correctness": result.eval_response.answer_correctness,
|
31 |
+
"code_reference": result.eval_response.code_reference,
|
32 |
+
"weighted_total": result.eval_response.weighted_total
|
33 |
+
}
|
34 |
+
rows.append(row)
|
35 |
+
|
36 |
+
return pd.DataFrame(rows)
|
37 |
+
|
38 |
+
def analyze_results(self):
|
39 |
+
"""Analyze and display results comparison"""
|
40 |
+
# Load all results
|
41 |
+
all_results = {
|
42 |
+
"embedding": [],
|
43 |
+
"reranking": []
|
44 |
+
}
|
45 |
+
|
46 |
+
for file in self.embedding_dir.glob("*.json"):
|
47 |
+
all_results["embedding"].extend(self.load_results(file))
|
48 |
+
|
49 |
+
for file in self.reranking_dir.glob("*.json"):
|
50 |
+
all_results["reranking"].extend(self.load_results(file))
|
51 |
+
|
52 |
+
# Convert to DataFrames
|
53 |
+
embedding_df = self.create_dataframe(all_results["embedding"])
|
54 |
+
reranking_df = self.create_dataframe(all_results["reranking"])
|
55 |
+
|
56 |
+
# Calculate statistics by evaluator model
|
57 |
+
def get_model_stats(df: pd.DataFrame) -> pd.DataFrame:
|
58 |
+
return df.groupby("evaluator_model").agg({
|
59 |
+
"chunk_relevance": ["mean", "std"],
|
60 |
+
"answer_correctness": ["mean", "std"],
|
61 |
+
"code_reference": ["mean", "std"],
|
62 |
+
"weighted_total": ["mean", "std"]
|
63 |
+
}).round(2)
|
64 |
+
|
65 |
+
embedding_stats = get_model_stats(embedding_df)
|
66 |
+
reranking_stats = get_model_stats(reranking_df)
|
67 |
+
|
68 |
+
# Display comparison tables
|
69 |
+
self.display_comparison_table(embedding_stats, reranking_stats)
|
70 |
+
self.display_improvement_metrics(embedding_df, reranking_df)
|
71 |
+
|
72 |
+
# Save detailed results to CSV
|
73 |
+
self.save_detailed_results(embedding_df, reranking_df)
|
74 |
+
|
75 |
+
def display_comparison_table(self, embedding_stats: pd.DataFrame, reranking_stats: pd.DataFrame):
|
76 |
+
"""Display rich table comparing embedding and reranking results"""
|
77 |
+
table = Table(title="Embedding vs Reranking Comparison")
|
78 |
+
|
79 |
+
table.add_column("Metric", style="cyan")
|
80 |
+
table.add_column("Model", style="magenta")
|
81 |
+
table.add_column("Embedding", style="blue")
|
82 |
+
table.add_column("Reranking", style="green")
|
83 |
+
table.add_column("Improvement", style="yellow")
|
84 |
+
|
85 |
+
metrics = ["chunk_relevance", "answer_correctness", "code_reference", "weighted_total"]
|
86 |
+
|
87 |
+
for metric in metrics:
|
88 |
+
for model in embedding_stats.index:
|
89 |
+
emb_mean = embedding_stats.loc[model, (metric, "mean")]
|
90 |
+
emb_std = embedding_stats.loc[model, (metric, "std")]
|
91 |
+
rer_mean = reranking_stats.loc[model, (metric, "mean")]
|
92 |
+
rer_std = reranking_stats.loc[model, (metric, "std")]
|
93 |
+
|
94 |
+
improvement = ((rer_mean - emb_mean) / emb_mean * 100).round(1)
|
95 |
+
|
96 |
+
table.add_row(
|
97 |
+
metric.replace("_", " ").title(),
|
98 |
+
model.split(":")[-1],
|
99 |
+
f"{emb_mean:.2f} ±{emb_std:.2f}",
|
100 |
+
f"{rer_mean:.2f} ±{rer_std:.2f}",
|
101 |
+
f"{improvement:+.1f}%" if improvement else "0%"
|
102 |
+
)
|
103 |
+
|
104 |
+
self.console.print(table)
|
105 |
+
|
106 |
+
def display_improvement_metrics(self, embedding_df: pd.DataFrame, reranking_df: pd.DataFrame):
|
107 |
+
"""Display additional improvement metrics"""
|
108 |
+
# Calculate improvements by difficulty
|
109 |
+
difficulties = sorted(embedding_df["difficulty"].unique())
|
110 |
+
|
111 |
+
table = Table(title="Improvements by Difficulty")
|
112 |
+
table.add_column("Difficulty", style="cyan")
|
113 |
+
table.add_column("Embedding", style="blue")
|
114 |
+
table.add_column("Reranking", style="green")
|
115 |
+
table.add_column("Improvement", style="yellow")
|
116 |
+
|
117 |
+
for diff in difficulties:
|
118 |
+
emb_score = embedding_df[embedding_df["difficulty"] == diff]["weighted_total"].mean()
|
119 |
+
rer_score = reranking_df[reranking_df["difficulty"] == diff]["weighted_total"].mean()
|
120 |
+
improvement = ((rer_score - emb_score) / emb_score * 100).round(1)
|
121 |
+
|
122 |
+
table.add_row(
|
123 |
+
str(diff),
|
124 |
+
f"{emb_score:.2f}",
|
125 |
+
f"{rer_score:.2f}",
|
126 |
+
f"{improvement:+.1f}%"
|
127 |
+
)
|
128 |
+
|
129 |
+
self.console.print(table)
|
130 |
+
|
131 |
+
def save_detailed_results(self, embedding_df: pd.DataFrame, reranking_df: pd.DataFrame):
|
132 |
+
"""Save detailed results to CSV"""
|
133 |
+
# Add method column
|
134 |
+
embedding_df["method"] = "embedding"
|
135 |
+
reranking_df["method"] = "reranking"
|
136 |
+
|
137 |
+
# Combine and save
|
138 |
+
combined_df = pd.concat([embedding_df, reranking_df])
|
139 |
+
combined_df.to_csv("evaluation_comparison.csv", index=False)
|
140 |
+
self.console.print(f"\nDetailed results saved to evaluation_comparison.csv")
|
141 |
+
|
142 |
+
if __name__ == "__main__":
|
143 |
+
analyzer = ResultAnalyzer(Path("evaluations"))
|
144 |
+
analyzer.analyze_results()
|