gabykim's picture
separate codebase dir from file absolute path
667a527
from dataclasses import dataclass
import gradio as gr
from knowlang.configs.config import AppConfig
from knowlang.utils.fancy_log import FancyLogger
from knowlang.utils.rate_limiter import RateLimiter
from knowlang.chat_bot.chat_graph import stream_chat_progress, ChatStatus
from knowlang.chat_bot.feedback import ChatAnalytics
import chromadb
from typing import List, Dict, AsyncGenerator
from pathlib import Path
from gradio import ChatMessage
LOG = FancyLogger(__name__)
@dataclass
class CodeContext:
file_path: str
start_line: int
end_line: int
def to_title(self) -> str:
"""Format code context as a title string"""
return f"📄 {self.file_path} (lines {self.start_line}-{self.end_line})"
@classmethod
def from_metadata(cls, metadata: Dict) -> "CodeContext":
"""Create code context from metadata dictionary"""
return cls(
file_path=metadata['file_path'],
start_line=metadata['start_line'],
end_line=metadata['end_line'],
)
class CodeQAChatInterface:
def __init__(self, config: AppConfig):
self.config = config
self._init_chroma()
self.rate_limiter = RateLimiter()
self.chat_analytics = ChatAnalytics(config.chat_analytics)
def _init_chroma(self):
"""Initialize ChromaDB connection"""
self.db_client = chromadb.PersistentClient(
path=str(self.config.db.persist_directory)
)
self.collection = self.db_client.get_collection(
name=self.config.db.collection_name
)
def _format_code_block(self, code : str, metadata: Dict) -> str:
"""Format a single code block with metadata"""
context = CodeContext.from_metadata(metadata)
return f"<details><summary>{context.to_title()}</summary>\n\n```python\n{code}\n```\n\n</details>"
def _handle_feedback(self, like_data: gr.LikeData, history: List[ChatMessage], request: gr.Request):
# Get the query and response pair
query = history[like_data.index - 1]["content"] # User question
# Track feedback
self.chat_analytics.track_feedback(
like=like_data.liked, # True for thumbs up, False for thumbs down
query=query,
client_ip=request.request.client.host
)
async def stream_response(
self,
message: str,
history: List[ChatMessage],
request: gr.Request, # gradio injects the request object
) -> AsyncGenerator[List[ChatMessage], None]:
"""Stream chat responses with progress updates"""
# Add user message
history.append(ChatMessage(role="user", content=message))
yield history
# Check rate limit before processing
client_ip : str = request.request.client.host
print(f"Client IP: {client_ip}")
if self.rate_limiter.check_rate_limit(client_ip):
wait_time = self.rate_limiter.get_remaining_time(client_ip)
rate_limit_message = (
f"Rate limit exceeded. Please wait {wait_time:.0f} seconds before sending another message."
)
history.append(ChatMessage(
role="assistant",
content=rate_limit_message,
metadata={
"title": "⚠️ Rate Limit Warning",
"status": "done"
}
))
yield history
return
current_progress: ChatMessage | None = None
code_blocks_added = False
async for result in stream_chat_progress(message, self.collection, self.config):
# Handle progress updates
if result.status != ChatStatus.COMPLETE:
if current_progress:
history.remove(current_progress)
current_progress = ChatMessage(
role="assistant",
content=result.progress_message,
metadata={
"title": f"{result.status.value.title()} Progress",
"status": "pending" if result.status != ChatStatus.ERROR else "error"
}
)
history.append(current_progress)
yield history
continue
# When complete, remove progress message and add final content
if current_progress:
history.remove(current_progress)
current_progress = None
# Add code blocks before final answer if not added yet
if not code_blocks_added and result.retrieved_context and result.retrieved_context.metadatas:
total_code_blocks = []
for chunk, metadata in zip(result.retrieved_context.chunks, result.retrieved_context.metadatas):
code_block = self._format_code_block(chunk, metadata)
if code_block:
total_code_blocks.append(code_block)
code_blocks_added = True
history.append(ChatMessage(
role="assistant",
content='\n\n'.join(total_code_blocks),
metadata={
"title": "💻 Code Context",
"collapsible": True
}
))
yield history
# Add final answer
history.append(ChatMessage(
role="assistant",
content=result.answer
))
yield history
def create_interface(self) -> gr.Blocks:
"""Create the Gradio interface"""
with gr.Blocks() as interface:
gr.Markdown(f"# {self.config.chat.interface_title}")
gr.Markdown(self.config.chat.interface_description)
chatbot = gr.Chatbot(
type="messages",
bubble_full_width=False,
render_markdown=True,
height=600
)
# Add example questions
example_questions = [
"what are the key components required to implement a new quantization method?",
"How does Trainer handle distributed training and gradient accumulation? Explain the implementation details.",
"How does the text generation pipeline handle chat-based generation and template processing?",
"How does the transformers library automatically select and configure the appropriate quantization method?",
"How to implement top-k filtering for text generation?"
]
msg = gr.Textbox(
label="Ask about the codebase",
placeholder=self.config.chat.interface_placeholder,
container=False,
scale=7
)
gr.Examples(
examples=example_questions,
inputs=msg,
label="Example Questions",
examples_per_page=6
)
with gr.Row():
submit = gr.Button("Submit", scale=1)
clear = gr.ClearButton([msg, chatbot], scale=1)
async def respond(message: str, history: List[ChatMessage], request: gr.Request) -> AsyncGenerator[List[ChatMessage], None]:
self.chat_analytics.track_query(message, request.request.client.host)
async for updated_history in self.stream_response(message, history, request):
yield updated_history
# Set up event handlers
msg.submit(respond, [msg, chatbot], [chatbot])
submit.click(respond, [msg, chatbot], [chatbot])
chatbot.like(self._handle_feedback, [chatbot])
return interface
def create_chatbot(config: AppConfig) -> gr.Blocks:
interface = CodeQAChatInterface(config)
return interface.create_interface()