File size: 3,159 Bytes
3536fc0 c9b82b3 60532a1 c9b82b3 3536fc0 c9b82b3 3536fc0 eede10d 3536fc0 c9b82b3 3536fc0 3a5efa8 3536fc0 3a5efa8 3536fc0 c9b82b3 3536fc0 212ff4c 3536fc0 212ff4c 3536fc0 c9b82b3 3536fc0 212ff4c 3536fc0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
import ollama
import openai
import voyageai
import voyageai.client
from knowlang.configs.config import EmbeddingConfig, ModelProvider
from typing import Union, List, overload, Optional
from enum import Enum
# Type definitions
EmbeddingVector = List[float]
class EmbeddingInputType(Enum):
DOCUMENT = "document"
QUERY = "query"
def _process_ollama_batch(inputs: List[str], model_name: str) -> List[EmbeddingVector]:
"""Helper function to process Ollama embeddings in batch."""
return ollama.embed(model=model_name, input=inputs)['embeddings']
def _process_openai_batch(inputs: List[str], model_name: str) -> List[EmbeddingVector]:
"""Helper function to process OpenAI embeddings in batch."""
response = openai.embeddings.create(
input=inputs,
model=model_name
)
return [item.embedding for item in response.data]
def _process_voiage_batch(inputs: List[str], model_name: str, input_type:EmbeddingInputType) -> List[EmbeddingVector]:
"""Helper function to process VoyageAI embeddings in batch."""
vo = voyageai.Client()
embeddings_obj = vo.embed(model=model_name, texts=inputs, input_type=input_type.value)
return embeddings_obj.embeddings
@overload
def generate_embedding(input: str, config: EmbeddingConfig, input_type: Optional[EmbeddingInputType]) -> EmbeddingVector: ...
@overload
def generate_embedding(input: List[str], config: EmbeddingConfig, input_type: Optional[EmbeddingInputType]) -> List[EmbeddingVector]: ...
def generate_embedding(
input: Union[str, List[str]],
config: EmbeddingConfig,
input_type: Optional[EmbeddingInputType] = EmbeddingInputType.DOCUMENT
) -> Union[EmbeddingVector, List[EmbeddingVector]]:
"""
Generate embeddings for single text input or batch of texts.
Args:
input: Single string or list of strings to embed
config: Configuration object containing provider and model information
Returns:
Single embedding vector for single input, or list of embedding vectors for batch input
Raises:
ValueError: If input type is invalid or provider is not supported
RuntimeError: If embedding generation fails
"""
if not input:
raise ValueError("Input cannot be empty")
# Convert single string to list for batch processing
is_single_input = isinstance(input, str)
inputs = [input] if is_single_input else input
try:
if config.model_provider == ModelProvider.OLLAMA:
embeddings = _process_ollama_batch(inputs, config.model_name)
elif config.model_provider == ModelProvider.OPENAI:
embeddings = _process_openai_batch(inputs, config.model_name)
elif config.model_provider == ModelProvider.VOYAGE:
embeddings = _process_voiage_batch(inputs, config.model_name, input_type)
else:
raise ValueError(f"Unsupported provider: {config.model_provider}")
# Return single embedding for single input
return embeddings[0] if is_single_input else embeddings
except Exception as e:
raise RuntimeError(f"Failed to generate embeddings: {str(e)}") from e |