File size: 6,689 Bytes
e5bfc68
 
 
 
 
 
 
 
60532a1
 
e5bfc68
60532a1
 
e5bfc68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9b82b3
e5bfc68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
from pathlib import Path
import matplotlib.pyplot as plt
import seaborn as sns
from typing import List, Dict, Tuple, Optional
import chromadb
import numpy as np
from pydantic import BaseModel
from dataclasses import dataclass
from knowlang.chat_bot.chat_graph import ChatResult
from knowlang.configs.config import AppConfig, EmbeddingConfig
import json
from knowlang.evaluation.chatbot_evaluation import EvalCase, TRANSFORMER_TEST_CASES
from knowlang.models.embeddings import EmbeddingInputType, generate_embedding, EmbeddingVector

@dataclass
class ConfigEvalResult:
    """Results for a single configuration"""
    config_name: str
    distances: List[float]
    stats: Dict[str, float]

class RetrievalMetrics(BaseModel):
    """Metrics for retrieval analysis"""
    distances: List[float]
    similarity_scores: List[float]
    chunk_count: int

class EnhancedChatResult(ChatResult):
    """Extended ChatResult with retrieval metrics"""
    retrieval_metrics: Optional[RetrievalMetrics] = None

def _embedding_cache_path(embdding_config: EmbeddingConfig) -> Path:
    """Get the cache path for a specific embedding configuration"""
    return Path(f"embeddings_{embdding_config.model_name}_{embdding_config.model_provider.value}.json")

def load_cached_embeddings(cache_path: Path, embdding_config: EmbeddingConfig) -> Optional[Dict[str, EmbeddingVector]]:
    """Load cached embeddings for a specific configuration"""
    cache_file = cache_path / _embedding_cache_path(embdding_config)
    if cache_file.exists():
        with open(cache_file, 'r') as f:
            return json.load(f)
    return None

def save_cached_embeddings(cache_path: Path, config: EmbeddingConfig, embeddings: Dict[str, EmbeddingVector]):
    """Save embeddings to cache"""
    cache_path.mkdir(parents=True, exist_ok=True)
    cache_file = cache_path / _embedding_cache_path(config)
    with open(cache_file, 'w') as f:
        json.dump(embeddings, f)

async def analyze_embedding_distributions(
    test_cases: List[EvalCase],
    configs: List[Tuple[str, AppConfig]],
    cache_path : Path
) -> List[ConfigEvalResult]:
    """Analyze embedding distance distributions for multiple configurations"""
    results = []
    
    for config_name, config in configs:
        # Try to load cached embeddings first
        cached_embeddings = load_cached_embeddings(cache_path, config.embedding)
        
        if cached_embeddings is None:
            print(f"Generating new embeddings for {config_name}...")
            # Generate embeddings for all test cases
            questions = [case.question for case in test_cases]
            try:
                embeddings = generate_embedding(questions, config.embedding, input_type=EmbeddingInputType.QUERY)
                
                # Cache the embeddings
                cached_embeddings = {
                    question: embedding 
                    for question, embedding in zip(questions, embeddings)
                }
                save_cached_embeddings(cache_path, config.embedding, cached_embeddings)
            except Exception as e:
                print(f"Error generating embeddings for {config_name}: {str(e)}")
                continue
        else:
            print(f"Using cached embeddings for {config_name}")

        # Get collection for this config
        collection = chromadb.PersistentClient(
            path=str(config.db.persist_directory)
        ).get_collection(f"{config.db.collection_name}")
        
        distances = []
        
        # Query each test case
        for case in test_cases:
            query_results = collection.query(
                query_embeddings=[cached_embeddings[case.question]],
                n_results=10,
                include=['distances']
            )
            distances.extend(query_results['distances'][0])
        
        # Calculate statistics
        stats = {
            'mean': float(np.mean(distances)),
            'std': float(np.std(distances)),
            'median': float(np.median(distances)),
            'min': float(np.min(distances)),
            'max': float(np.max(distances))
        }
        
        results.append(ConfigEvalResult(
            config_name=config_name,
            distances=distances,
            stats=stats
        ))
    
    return results

def plot_distance_distributions(results: List[ConfigEvalResult]):
    """Plot and compare distance distributions for all configurations"""
    plt.figure(figsize=(15, 8))
    
    # Convert data to pandas DataFrame
    import pandas as pd
    all_data = pd.DataFrame([
        {'method': result.config_name, 'distance': d}
        for result in results
        for d in result.distances
    ])

    # Distribution plot
    plt.subplot(2, 2, 1)
    sns.histplot(
        data=all_data,
        x='distance',
        hue='method',
        stat='density',
        common_norm=True,
        alpha=0.6
    )
    plt.title('Distance Distribution Comparison')
    plt.xlabel('Cosine Distance')
    plt.ylabel('Density')
    
    # Box plot with pandas DataFrame
    plt.subplot(2, 2, 2)
    sns.boxplot(
        data=all_data,
        x='method',
        y='distance'
    )
    plt.title('Distance Distribution Statistics')
    plt.ylabel('Cosine Distance')
    plt.xticks(rotation=45)
    
    # Statistics summary
    plt.subplot(2, 2, (3, 4))
    stats_text = "Distance Statistics:\n\n"
    for result in results:
        stats_text += f"{result.config_name}:\n"
        stats_text += f"  Mean: {result.stats['mean']:.3f} ± {result.stats['std']:.3f}\n"
        stats_text += f"  Median: {result.stats['median']:.3f}\n"
        stats_text += f"  Range: [{result.stats['min']:.3f}, {result.stats['max']:.3f}]\n\n"
    
    plt.text(0.1, 0.9, stats_text, 
             transform=plt.gca().transAxes,
             verticalalignment='top',
             fontfamily='monospace')
    plt.axis('off')

    print(stats_text)
    
    plt.tight_layout()
    plt.savefig('embedding_comparison.png')
    plt.close()

async def main():
    # Define different configurations to compare
    configs = [
        ("Ollama Embedding", AppConfig(_env_file=Path('.env.evaluation.ollama'))),
        ("OpenAI Embedding", AppConfig(_env_file=Path('.env.evaluation.openai'))),
        # Add more configurations as needed
    ]
    
    # Analyze distributions for all configs
    results = await analyze_embedding_distributions(
        TRANSFORMER_TEST_CASES,
        configs,
        cache_path=Path("evaluations", "embedding_cache")
    )
    
    # Plot distributions
    plot_distance_distributions(results)
    
    return results

if __name__ == "__main__":
    import asyncio
    asyncio.run(main())