File size: 14,848 Bytes
1e72ff4 cc62136 93668c2 cc62136 60532a1 cc62136 31e157d ea31570 cc62136 93668c2 56615c6 93668c2 cc62136 1e72ff4 93668c2 1e72ff4 93668c2 1e72ff4 cc62136 93668c2 cc62136 56615c6 cc62136 56615c6 6c57077 56615c6 cc62136 1e72ff4 cc62136 1e72ff4 cc62136 1e72ff4 ea31570 1e72ff4 cc62136 1e72ff4 e363daf cc62136 56615c6 cc62136 56615c6 ea31570 56615c6 93668c2 6c57077 56615c6 7db7573 93668c2 ea31570 6c57077 93668c2 43d245e ea31570 43d245e 6c57077 7db7573 6c57077 31e157d 93668c2 ea31570 93668c2 56615c6 93668c2 56615c6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 |
from typing import List
from enum import Enum
from pydantic import BaseModel, Field, computed_field
from pydantic_ai import Agent
from knowlang.configs.config import AppConfig
from knowlang.utils.chunking_util import truncate_chunk
from knowlang.utils.model_provider import create_pydantic_model
from knowlang.chat_bot.chat_graph import ChatResult, process_chat
import asyncio
import datetime
from pathlib import Path
import json
class EvalMetric(str, Enum):
CHUNK_RELEVANCE = "chunk_relevance"
ANSWER_CORRECTNESS = "answer_correctness"
CODE_REFERENCE = "code_reference"
class EvalCase(BaseModel):
"""Single evaluation case focused on code understanding"""
question: str
expected_files: List[str] = Field(description="Files that should be in retrieved chunks")
expected_concepts: List[str] = Field(description="Key concepts that should be in answer")
expected_code_refs: List[str] = Field(description="Code references that should be mentioned")
difficulty: int = Field(ge=1, le=3, description="1: Easy, 2: Medium, 3: Hard")
class MetricScores(BaseModel):
chunk_relevance: float = Field(ge=0.0, le=10.0, description="Score for chunk relevance")
answer_correctness: float = Field(ge=0.0, le=10.0, description="Score for answer correctness")
code_reference: float = Field(ge=0.0, le=10.0, description="Score for code reference quality")
@computed_field
def weighted_total(self) -> float:
"""Calculate weighted total score"""
weights = {
"chunk_relevance": 0.4,
"answer_correctness": 0.4,
"code_reference": 0.2
}
return sum(
getattr(self, metric) * weight
for metric, weight in weights.items()
)
class EvalAgentResponse(MetricScores):
"""Raw response from evaluation agent"""
feedback: str
class EvalRound(BaseModel):
"""Single evaluation round results"""
round_id: int
eval_response: EvalAgentResponse
timestamp: datetime.datetime
class EvalResult(BaseModel):
"""Extended evaluation result with multiple rounds"""
evaluator_model: str
case: EvalCase
eval_rounds: List[EvalRound]
@computed_field
def aggregated_scores(self) -> MetricScores:
"""Calculate mean scores across rounds"""
chunk_relevance = EvalMetric.CHUNK_RELEVANCE.value
answer_correctness = EvalMetric.ANSWER_CORRECTNESS.value
code_reference = EvalMetric.CODE_REFERENCE.value
scores = {
chunk_relevance: [],
answer_correctness: [],
code_reference: []
}
for round in self.eval_rounds:
for metric in scores.keys():
scores[metric].append(getattr(round.eval_response, metric))
return MetricScores(
chunk_relevance=sum(scores[chunk_relevance]) / len(self.eval_rounds),
answer_correctness=sum(scores[answer_correctness]) / len(self.eval_rounds),
code_reference=sum(scores[code_reference]) / len(self.eval_rounds)
)
class ChatBotEvaluationContext(EvalCase, ChatResult):
pass
class EvalSummary(EvalResult, ChatResult):
"""Evaluation summary with chat and evaluation results"""
pass
class ChatBotEvaluator:
def __init__(self, config: AppConfig):
"""Initialize evaluator with app config"""
self.config = config
self.eval_agent = Agent(
create_pydantic_model(
model_provider=config.evaluator.model_provider,
model_name=config.evaluator.model_name
),
system_prompt=self._build_eval_prompt(),
result_type=EvalAgentResponse
)
def _build_eval_prompt(self) -> str:
return """You are an expert evaluator of code understanding systems.
Evaluate the response based on these specific criteria:
1. Chunk Relevance (0-1):
- Are the retrieved code chunks from the expected files?
- Do they contain relevant code sections?
2. Answer Correctness (0-1):
- Does the answer accurately explain the code?
- Are the expected concepts covered?
3. Code Reference Quality (0-1):
- Does it properly cite specific code locations?
- Are code references clear and relevant?
Format your response as JSON:
{
"chunk_relevance": float type score (from 0.0f to 10.0f),
"answer_correctness": float type score (from 0.0f to 10.0f),
"code_reference": float type score (from 0.0f to 10.0f),
"feedback": "Brief explanation of scores"
}
"""
async def evaluate_single(
self,
case: EvalCase,
chat_result: ChatResult,
num_rounds: int = 1,
) -> EvalResult:
"""Evaluate a single case for multiple rounds"""
eval_rounds = []
# Prepare evaluation context
eval_context = ChatBotEvaluationContext(
**case.model_dump(),
**chat_result.model_dump()
)
for round_id in range(num_rounds):
# truncate chunks to avoid long text
for chunk in eval_context.retrieved_context.chunks:
chunk = truncate_chunk(chunk)
# Get evaluation from the model
result = await self.eval_agent.run(
eval_context.model_dump_json(),
)
eval_rounds.append(EvalRound(
round_id=round_id,
eval_response=result.data,
timestamp=datetime.datetime.now()
))
# Add delay between rounds to avoid rate limits
await asyncio.sleep(2)
return EvalResult(
case=case,
eval_rounds=eval_rounds,
evaluator_model=f"{self.config.evaluator.model_provider}:{self.config.evaluator.model_name}"
)
# src/transformers/quantizers/base.py
TRANSFORMER_QUANTIZER_BASE_CASES = [
EvalCase(
question= "How are different quantization methods implemented in the transformers library, and what are the key components required to implement a new quantization method?",
expected_files= ["quantizers/base.py"],
expected_concepts= [
"HfQuantizer abstract base class",
"PreTrainedModel quantization",
"pre/post processing of models",
"quantization configuration",
"requires_calibration flag"
],
expected_code_refs= [
"class HfQuantizer",
"preprocess_model method",
"postprocess_model method",
"_process_model_before_weight_loading",
"requires_calibration attribute"
],
difficulty= 3
)
]
# src/transformers/quantizers/auto.py
TRANSFORMER_QUANTIZER_AUTO_CASES = [
EvalCase(
question="How does the transformers library automatically select and configure the appropriate quantization method, and what happens when loading a pre-quantized model?",
expected_files=[
"quantizers/auto.py",
"utils/quantization_config.py"
],
expected_concepts=[
"automatic quantizer selection",
"quantization config mapping",
"config merging behavior",
"backwards compatibility for bitsandbytes",
"quantization method resolution"
],
expected_code_refs=[
"AUTO_QUANTIZER_MAPPING",
"AUTO_QUANTIZATION_CONFIG_MAPPING",
"AutoHfQuantizer.from_config",
"AutoQuantizationConfig.from_pretrained",
"merge_quantization_configs method"
],
difficulty=3
)
]
# src/transformers/pipelines/base.py
TRANSFORMER_PIPELINE_BASE_TEST_CASES = [
EvalCase(
question="How does the Pipeline class handle model and device initialization?",
expected_files=["base.py"],
expected_concepts=[
"device placement",
"model initialization",
"framework detection",
"device type detection",
"torch dtype handling"
],
expected_code_refs=[
"def __init__",
"def device_placement",
"infer_framework_load_model",
"self.device = torch.device"
],
difficulty=3
),
EvalCase(
question="How does the Pipeline class implement batched inference and data loading?",
expected_files=["base.py", "pt_utils.py"],
expected_concepts=[
"batch processing",
"data loading",
"collate function",
"padding implementation",
"iterator pattern"
],
expected_code_refs=[
"def get_iterator",
"class PipelineDataset",
"class PipelineIterator",
"_pad",
"pad_collate_fn"
],
difficulty=3
)
]
# src/transformers/pipelines/text_generation.py
TRANSFORMER_PIPELINE_TEXT_GENERATION_TEST_CASES = [
EvalCase(
question="How does the TextGenerationPipeline handle chat-based generation and template processing?",
expected_files=["text_generation.py", "base.py"],
expected_concepts=[
"chat message formatting",
"template application",
"message continuation",
"role handling",
"assistant prefill behavior"
],
expected_code_refs=[
"class Chat",
"tokenizer.apply_chat_template",
"continue_final_message",
"isinstance(prompt_text, Chat)",
"postprocess"
],
difficulty=3
)
]
# src/transformers/generation/logits_process.py
TRANSFORMER_LOGITS_PROCESSOR_TEST_CASES = [
EvalCase(
question="How does TopKLogitsWarper implement top-k filtering for text generation?",
expected_files=["generation/logits_process.py"],
expected_concepts=[
"top-k filtering algorithm",
"probability masking",
"batch processing",
"logits manipulation",
"vocabulary filtering"
],
expected_code_refs=[
"class TopKLogitsWarper(LogitsProcessor)",
"torch.topk(scores, top_k)[0]",
"indices_to_remove = scores < torch.topk",
"scores_processed = scores.masked_fill(indices_to_remove, self.filter_value)",
"top_k = max(top_k, min_tokens_to_keep)"
],
difficulty=3
),
EvalCase(
question="How does TemperatureLogitsProcessor implement temperature sampling for controlling generation randomness?",
expected_files=["generation/logits_process.py"],
expected_concepts=[
"temperature scaling",
"probability distribution shaping",
"logits normalization",
"generation randomness control",
"batch processing with temperature"
],
expected_code_refs=[
"class TemperatureLogitsProcessor(LogitsProcessor)",
"scores_processed = scores / self.temperature",
"if not isinstance(temperature, float) or not (temperature > 0)",
"def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor)",
"raise ValueError(except_msg)"
],
difficulty=3
)
]
# src/transformers/trainer.py
TRANSFORMER_TRAINER_TEST_CASES = [
EvalCase(
question="How does Trainer handle distributed training and gradient accumulation? Explain the implementation details.",
expected_files=["trainer.py"],
expected_concepts=[
"gradient accumulation steps",
"distributed training logic",
"optimizer step scheduling",
"loss scaling",
"device synchronization"
],
expected_code_refs=[
"def training_step",
"def _wrap_model",
"self.accelerator.backward",
"self.args.gradient_accumulation_steps",
"if args.n_gpu > 1",
"model.zero_grad()"
],
difficulty=3
),
EvalCase(
question="How does the Trainer class implement custom optimizer and learning rate scheduler creation? Explain the initialization process and supported configurations.",
expected_files=["trainer.py"],
expected_concepts=[
"optimizer initialization",
"learning rate scheduler",
"weight decay handling",
"optimizer parameter groups",
"AdamW configuration",
"custom optimizer support"
],
expected_code_refs=[
"def create_optimizer",
"def create_scheduler",
"get_decay_parameter_names",
"optimizer_grouped_parameters",
"self.args.learning_rate",
"optimizer_kwargs"
],
difficulty=3
)
]
TRANSFORMER_TEST_CASES : List[EvalCase] = [
*TRANSFORMER_QUANTIZER_BASE_CASES,
*TRANSFORMER_QUANTIZER_AUTO_CASES,
*TRANSFORMER_PIPELINE_BASE_TEST_CASES,
*TRANSFORMER_PIPELINE_TEXT_GENERATION_TEST_CASES,
*TRANSFORMER_LOGITS_PROCESSOR_TEST_CASES,
*TRANSFORMER_TRAINER_TEST_CASES,
]
class DateTimeEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj, datetime.datetime):
return obj.isoformat()
return super().default(obj)
async def main():
from rich.console import Console
from rich.pretty import Pretty
import chromadb
console = Console()
config = AppConfig()
evaluator = ChatBotEvaluator(config)
collection = chromadb.PersistentClient(path=str(config.db.persist_directory)).get_collection(name=config.db.collection_name)
summary_list : List[EvalSummary] = []
for case in TRANSFORMER_TEST_CASES:
try:
chat_result : ChatResult = await process_chat(question=case.question, collection=collection, config=config)
result : EvalResult = await evaluator.evaluate_single(case, chat_result, config.evaluator.evaluation_rounds)
eval_summary = EvalSummary(
**chat_result.model_dump(),
**result.model_dump()
)
summary_list.append(eval_summary)
import time
time.sleep(3) # Sleep to avoid rate limiting
except Exception:
console.print_exception()
# Write the final JSON array to a file
current_date = datetime.datetime.now().strftime("%Y%m%d")
file_name = Path("evaluations", f"transformers_{config.evaluator.model_provider}_evaluation_results_{current_date}.json")
with open(file_name, "w") as f:
json_list = [summary.model_dump() for summary in summary_list]
json.dump(json_list, f, indent=2, cls=DateTimeEncoder)
console.print(Pretty(summary_list))
if __name__ == "__main__":
asyncio.run(main()) |