File size: 14,848 Bytes
1e72ff4
cc62136
93668c2
cc62136
60532a1
 
 
 
cc62136
31e157d
 
ea31570
cc62136
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93668c2
56615c6
 
 
93668c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc62136
 
1e72ff4
 
 
 
 
 
93668c2
1e72ff4
93668c2
 
1e72ff4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc62136
 
 
 
93668c2
 
 
 
cc62136
 
 
 
 
 
 
56615c6
 
cc62136
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56615c6
 
 
6c57077
 
 
56615c6
 
 
cc62136
 
 
 
1e72ff4
 
cc62136
1e72ff4
 
cc62136
 
 
 
 
 
1e72ff4
ea31570
 
 
 
1e72ff4
 
 
 
 
 
 
 
 
 
 
 
 
cc62136
 
 
1e72ff4
e363daf
cc62136
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56615c6
cc62136
 
 
 
 
 
56615c6
 
ea31570
 
 
 
 
56615c6
 
 
 
 
 
 
 
 
 
93668c2
6c57077
56615c6
7db7573
93668c2
ea31570
6c57077
93668c2
 
 
 
 
 
43d245e
ea31570
43d245e
6c57077
7db7573
6c57077
 
31e157d
 
 
93668c2
ea31570
93668c2
56615c6
93668c2
56615c6
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
from typing import List
from enum import Enum
from pydantic import BaseModel, Field, computed_field
from pydantic_ai import Agent
from knowlang.configs.config import AppConfig
from knowlang.utils.chunking_util import truncate_chunk
from knowlang.utils.model_provider import create_pydantic_model
from knowlang.chat_bot.chat_graph import ChatResult, process_chat
import asyncio
import datetime
from pathlib import Path
import json

class EvalMetric(str, Enum):
    CHUNK_RELEVANCE = "chunk_relevance"
    ANSWER_CORRECTNESS = "answer_correctness"
    CODE_REFERENCE = "code_reference"

class EvalCase(BaseModel):
    """Single evaluation case focused on code understanding"""
    question: str
    expected_files: List[str] = Field(description="Files that should be in retrieved chunks")
    expected_concepts: List[str] = Field(description="Key concepts that should be in answer")
    expected_code_refs: List[str] = Field(description="Code references that should be mentioned")
    difficulty: int = Field(ge=1, le=3, description="1: Easy, 2: Medium, 3: Hard")


class MetricScores(BaseModel):
    chunk_relevance: float = Field(ge=0.0, le=10.0, description="Score for chunk relevance")
    answer_correctness: float = Field(ge=0.0, le=10.0, description="Score for answer correctness")
    code_reference: float = Field(ge=0.0, le=10.0, description="Score for code reference quality")

    @computed_field
    def weighted_total(self) -> float:
        """Calculate weighted total score"""
        weights = {
            "chunk_relevance": 0.4,
            "answer_correctness": 0.4,
            "code_reference": 0.2
        }
        return sum(
            getattr(self, metric) * weight 
            for metric, weight in weights.items()
        )

class EvalAgentResponse(MetricScores):
    """Raw response from evaluation agent"""
    feedback: str

class EvalRound(BaseModel):
    """Single evaluation round results"""
    round_id: int
    eval_response: EvalAgentResponse
    timestamp: datetime.datetime

class EvalResult(BaseModel):
    """Extended evaluation result with multiple rounds"""
    evaluator_model: str
    case: EvalCase
    eval_rounds: List[EvalRound]

    @computed_field
    def aggregated_scores(self) -> MetricScores:
        """Calculate mean scores across rounds"""
        chunk_relevance = EvalMetric.CHUNK_RELEVANCE.value
        answer_correctness = EvalMetric.ANSWER_CORRECTNESS.value
        code_reference = EvalMetric.CODE_REFERENCE.value

        scores = {
            chunk_relevance: [],
            answer_correctness: [],
            code_reference: []
        }
        
        for round in self.eval_rounds:
            for metric in scores.keys():
                scores[metric].append(getattr(round.eval_response, metric))
        
        return MetricScores(
            chunk_relevance=sum(scores[chunk_relevance]) / len(self.eval_rounds),
            answer_correctness=sum(scores[answer_correctness]) / len(self.eval_rounds),
            code_reference=sum(scores[code_reference]) / len(self.eval_rounds)
        )

class ChatBotEvaluationContext(EvalCase, ChatResult):
    pass

class EvalSummary(EvalResult, ChatResult):
    """Evaluation summary with chat and evaluation results"""
    pass

    
class ChatBotEvaluator:
    def __init__(self, config: AppConfig):
        """Initialize evaluator with app config"""
        self.config = config
        self.eval_agent = Agent(
            create_pydantic_model(
                model_provider=config.evaluator.model_provider,
                model_name=config.evaluator.model_name
            ),
            system_prompt=self._build_eval_prompt(),
            result_type=EvalAgentResponse
        )

    def _build_eval_prompt(self) -> str:
        return """You are an expert evaluator of code understanding systems.
Evaluate the response based on these specific criteria:

1. Chunk Relevance (0-1):
- Are the retrieved code chunks from the expected files?
- Do they contain relevant code sections?

2. Answer Correctness (0-1):
- Does the answer accurately explain the code?
- Are the expected concepts covered?

3. Code Reference Quality (0-1):
- Does it properly cite specific code locations?
- Are code references clear and relevant?

Format your response as JSON:
{
    "chunk_relevance": float type score (from 0.0f to 10.0f),
    "answer_correctness": float type score (from 0.0f to 10.0f),
    "code_reference": float type score (from 0.0f to 10.0f),
    "feedback": "Brief explanation of scores"
}
"""

    async def evaluate_single(
        self,
        case: EvalCase,
        chat_result: ChatResult,
        num_rounds: int = 1,
    ) -> EvalResult:
        """Evaluate a single case for multiple rounds"""
        eval_rounds = []
        # Prepare evaluation context
        eval_context = ChatBotEvaluationContext(
            **case.model_dump(),
            **chat_result.model_dump()
        )

        for round_id in range(num_rounds):
            # truncate chunks to avoid long text
            for chunk in eval_context.retrieved_context.chunks:
                chunk = truncate_chunk(chunk)

            # Get evaluation from the model
            result = await self.eval_agent.run(
                eval_context.model_dump_json(),
            )
            
            eval_rounds.append(EvalRound(
                round_id=round_id,
                eval_response=result.data,
                timestamp=datetime.datetime.now()
            ))
            
            # Add delay between rounds to avoid rate limits
            await asyncio.sleep(2)

        return EvalResult(
            case=case,
            eval_rounds=eval_rounds,
            evaluator_model=f"{self.config.evaluator.model_provider}:{self.config.evaluator.model_name}"
        )


# src/transformers/quantizers/base.py
TRANSFORMER_QUANTIZER_BASE_CASES = [
    EvalCase(
        question= "How are different quantization methods implemented in the transformers library, and what are the key components required to implement a new quantization method?",
        expected_files= ["quantizers/base.py"],
        expected_concepts= [
            "HfQuantizer abstract base class",
            "PreTrainedModel quantization",
            "pre/post processing of models",
            "quantization configuration", 
            "requires_calibration flag"
        ],
        expected_code_refs= [
            "class HfQuantizer",
            "preprocess_model method",
            "postprocess_model method",
            "_process_model_before_weight_loading",
            "requires_calibration attribute"
        ],
        difficulty= 3
    )
]

# src/transformers/quantizers/auto.py
TRANSFORMER_QUANTIZER_AUTO_CASES = [
    EvalCase(
        question="How does the transformers library automatically select and configure the appropriate quantization method, and what happens when loading a pre-quantized model?",
        expected_files=[
            "quantizers/auto.py",
            "utils/quantization_config.py"
        ],
        expected_concepts=[
            "automatic quantizer selection",
            "quantization config mapping",
            "config merging behavior",
            "backwards compatibility for bitsandbytes",
            "quantization method resolution"
        ],
        expected_code_refs=[
            "AUTO_QUANTIZER_MAPPING",
            "AUTO_QUANTIZATION_CONFIG_MAPPING",
            "AutoHfQuantizer.from_config",
            "AutoQuantizationConfig.from_pretrained",
            "merge_quantization_configs method"
        ],
        difficulty=3
    )
]


# src/transformers/pipelines/base.py
TRANSFORMER_PIPELINE_BASE_TEST_CASES = [
    EvalCase(
        question="How does the Pipeline class handle model and device initialization?",
        expected_files=["base.py"],
        expected_concepts=[
            "device placement",
            "model initialization",
            "framework detection",
            "device type detection",
            "torch dtype handling"
        ],
        expected_code_refs=[
            "def __init__",
            "def device_placement",
            "infer_framework_load_model",
            "self.device = torch.device"
        ],
        difficulty=3
    ),
    EvalCase(
        question="How does the Pipeline class implement batched inference and data loading?",
        expected_files=["base.py", "pt_utils.py"],
        expected_concepts=[
            "batch processing",
            "data loading",
            "collate function",
            "padding implementation",
            "iterator pattern"
        ],
        expected_code_refs=[
            "def get_iterator",
            "class PipelineDataset",
            "class PipelineIterator",
            "_pad",
            "pad_collate_fn"
        ],
        difficulty=3
    )
]

# src/transformers/pipelines/text_generation.py
TRANSFORMER_PIPELINE_TEXT_GENERATION_TEST_CASES = [
    EvalCase(
        question="How does the TextGenerationPipeline handle chat-based generation and template processing?",
        expected_files=["text_generation.py", "base.py"],
        expected_concepts=[
            "chat message formatting",
            "template application",
            "message continuation",
            "role handling",
            "assistant prefill behavior"
        ],
        expected_code_refs=[
            "class Chat",
            "tokenizer.apply_chat_template",
            "continue_final_message",
            "isinstance(prompt_text, Chat)",
            "postprocess"
        ],
        difficulty=3
    )
]

# src/transformers/generation/logits_process.py
TRANSFORMER_LOGITS_PROCESSOR_TEST_CASES = [
    EvalCase(
        question="How does TopKLogitsWarper implement top-k filtering for text generation?",
        expected_files=["generation/logits_process.py"],
        expected_concepts=[
            "top-k filtering algorithm",
            "probability masking",
            "batch processing",
            "logits manipulation",
            "vocabulary filtering"
        ],
        expected_code_refs=[
            "class TopKLogitsWarper(LogitsProcessor)",
            "torch.topk(scores, top_k)[0]",
            "indices_to_remove = scores < torch.topk",
            "scores_processed = scores.masked_fill(indices_to_remove, self.filter_value)",
            "top_k = max(top_k, min_tokens_to_keep)"
        ],
        difficulty=3
    ),
    EvalCase(
        question="How does TemperatureLogitsProcessor implement temperature sampling for controlling generation randomness?",
        expected_files=["generation/logits_process.py"],
        expected_concepts=[
            "temperature scaling",
            "probability distribution shaping",
            "logits normalization",
            "generation randomness control",
            "batch processing with temperature"
        ],
        expected_code_refs=[
            "class TemperatureLogitsProcessor(LogitsProcessor)",
            "scores_processed = scores / self.temperature",
            "if not isinstance(temperature, float) or not (temperature > 0)",
            "def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor)",
            "raise ValueError(except_msg)"
        ],
        difficulty=3
    )
]

# src/transformers/trainer.py
TRANSFORMER_TRAINER_TEST_CASES = [
    EvalCase(
        question="How does Trainer handle distributed training and gradient accumulation? Explain the implementation details.",
        expected_files=["trainer.py"],
        expected_concepts=[
            "gradient accumulation steps",
            "distributed training logic",
            "optimizer step scheduling",
            "loss scaling",
            "device synchronization"
        ],
        expected_code_refs=[
            "def training_step",
            "def _wrap_model",
            "self.accelerator.backward",
            "self.args.gradient_accumulation_steps",
            "if args.n_gpu > 1",
            "model.zero_grad()"
        ],
        difficulty=3
    ),
    EvalCase(
        question="How does the Trainer class implement custom optimizer and learning rate scheduler creation? Explain the initialization process and supported configurations.",
        expected_files=["trainer.py"],
        expected_concepts=[
            "optimizer initialization",
            "learning rate scheduler",
            "weight decay handling",
            "optimizer parameter groups",
            "AdamW configuration",
            "custom optimizer support"
        ],
        expected_code_refs=[
            "def create_optimizer",
            "def create_scheduler",
            "get_decay_parameter_names",
            "optimizer_grouped_parameters",
            "self.args.learning_rate",
            "optimizer_kwargs"
        ],
        difficulty=3
    )
]

TRANSFORMER_TEST_CASES : List[EvalCase] = [
    *TRANSFORMER_QUANTIZER_BASE_CASES,
    *TRANSFORMER_QUANTIZER_AUTO_CASES,
    *TRANSFORMER_PIPELINE_BASE_TEST_CASES,
    *TRANSFORMER_PIPELINE_TEXT_GENERATION_TEST_CASES,
    *TRANSFORMER_LOGITS_PROCESSOR_TEST_CASES,
    *TRANSFORMER_TRAINER_TEST_CASES,
]

class DateTimeEncoder(json.JSONEncoder):
    def default(self, obj):
        if isinstance(obj, datetime.datetime):
            return obj.isoformat()
        return super().default(obj)

async def main():
    from rich.console import Console
    from rich.pretty import Pretty
    import chromadb
    console = Console()
    config = AppConfig()
    evaluator = ChatBotEvaluator(config)
    collection = chromadb.PersistentClient(path=str(config.db.persist_directory)).get_collection(name=config.db.collection_name)

    summary_list : List[EvalSummary] = []

    for case in TRANSFORMER_TEST_CASES:
        try:
            chat_result : ChatResult = await process_chat(question=case.question, collection=collection, config=config)
            result : EvalResult = await evaluator.evaluate_single(case, chat_result, config.evaluator.evaluation_rounds)
            
            eval_summary = EvalSummary(
                **chat_result.model_dump(),
                **result.model_dump()
            )
            summary_list.append(eval_summary)

            import time
            time.sleep(3) # Sleep to avoid rate limiting

        except Exception:
            console.print_exception()
    
    # Write the final JSON array to a file
    current_date = datetime.datetime.now().strftime("%Y%m%d")
    file_name = Path("evaluations", f"transformers_{config.evaluator.model_provider}_evaluation_results_{current_date}.json")
    with open(file_name, "w") as f:
        json_list = [summary.model_dump() for summary in summary_list]
        json.dump(json_list, f, indent=2, cls=DateTimeEncoder)


    console.print(Pretty(summary_list))

if __name__ == "__main__":
    asyncio.run(main())