File size: 2,279 Bytes
ad108b7
 
 
 
 
86e679c
 
 
ad108b7
 
 
 
 
 
 
86e679c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad108b7
86e679c
 
ad108b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86e679c
ad108b7
 
 
86e679c
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import pandas as pd
from typing import List
from os.path import join as opj
import json
from config import dataset2info, model2info, LOCAL_RESULTS_DIR
import logging

logger = logging.getLogger(__name__)


def load_language_results(
    model_id: str, dataset_id: str, lang_ids: List[str], setup: str
):
    lang_gaps = dict()
    for lang in lang_ids:

        try:
            with open(
                opj(
                    LOCAL_RESULTS_DIR,
                    "evaluation",
                    dataset_id,
                    f"results_{model_id}_{dataset_id}_devtest_{lang}_gender_{setup}.json",
                )
            ) as fp:
                data = json.load(fp)
                lang_gaps[lang] = data[f"{data['eval_metric']}_diff_mean"]
        except FileNotFoundError:
            logger.debug(
                f"We could not find the result file for <model,dataset,lang>: {model_id}, {dataset_id}, {lang}"
            )
            lang_gaps[lang] = None

    return lang_gaps


def read_all_configs(setup: str):

    all_datasets = dataset2info.keys()
    print("Parsing results datasets:", all_datasets)
    all_models = model2info.keys()
    print("Parsing results models:", all_models)

    rows = list()
    for dataset_id in all_datasets:
        for model_id in all_models:
            lang_gaps = load_language_results(
                model_id, dataset_id, dataset2info[dataset_id].langs, setup
            )

            rows.extend(
                [
                    {
                        "Model": model_id,
                        "Dataset": dataset_id,
                        "Language": lang,
                        "Gap": lang_gaps[lang],
                    }
                    for lang in lang_gaps
                ]
            )

    results_df = pd.DataFrame(rows)
    # results_df = results_df.drop(columns=["Dataset"])
    # results_df = results_df.sort_values(by="Mean Gap", ascending=True)

    return results_df


def get_common_langs():
    """Return a list of langs that are support by all models"""
    common_langs = set(model2info[list(model2info.keys())[0]].langs)
    for model_id in model2info.keys():
        common_langs = common_langs.intersection(model2info[model_id].langs)

    return list(common_langs)