Spaces:
Running
Running
File size: 6,101 Bytes
0542773 ad108b7 86e679c ad108b7 0542773 ad108b7 0542773 86e679c ad108b7 86e679c 9a7f023 86e679c 9a7f023 86e679c ad108b7 0542773 86e679c ad108b7 86e679c ad108b7 86e679c ad108b7 86e679c 0542773 ad108b7 0542773 86e679c ad108b7 0542773 ad108b7 86e679c ad108b7 86e679c 0542773 86e679c 0542773 86e679c 0542773 86e679c 0542773 86e679c 0542773 ad108b7 0542773 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
import gradio as gr
import pandas as pd
import random
import plotly.express as px
from huggingface_hub import snapshot_download
import os
import logging
from config import (
SETUPS,
LOCAL_RESULTS_DIR,
CITATION_BUTTON_TEXT,
CITATION_BUTTON_LABEL,
)
from parsing import read_all_configs, get_common_langs
# Set up logging
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s",
handlers=[
# logging.FileHandler("app.log"),
logging.StreamHandler()
],
)
logger = logging.getLogger(__name__)
try:
print("Saving results locally at:", LOCAL_RESULTS_DIR)
snapshot_download(
repo_id="g8a9/fair-asr-results",
local_dir=LOCAL_RESULTS_DIR,
repo_type="dataset",
tqdm_class=None,
etag_timeout=30,
ignore_patterns=["*samples*", "*transcripts*"],
token=os.environ.get("TOKEN"),
)
except Exception as e:
raise e
def format_dataframe(df, times_100=False):
if times_100:
df = df.map(lambda x: (f"{x * 100:.3f}%" if isinstance(x, (int, float)) else x))
else:
df = df.map(lambda x: (f"{x:.4f}" if isinstance(x, (int, float)) else x))
return df
def _build_models_with_nan_md(models_with_nan):
model_markups = [f"*{m}*" for m in models_with_nan]
return f"""
We are currently hiding the results of {', '.join(model_markups)} because they don't support all languages.
"""
def build_components(show_common_langs):
aggregated_df, lang_df, barplot_fig, models_with_nan = _populate_components(
show_common_langs
)
models_with_nan_md = _build_models_with_nan_md(models_with_nan)
return (
gr.DataFrame(format_dataframe(aggregated_df)),
gr.DataFrame(format_dataframe(lang_df, times_100=True)),
gr.Plot(barplot_fig),
gr.Markdown(models_with_nan_md, visible=len(models_with_nan) > 0),
)
def _populate_components(show_common_langs):
fm = SETUPS[0]
setup = fm["majority_group"] + "_" + fm["minority_group"]
results = read_all_configs(setup)
if show_common_langs:
common_langs = get_common_langs()
logger.info(f"Common langs: {common_langs}")
results = results[results["Language"].isin(common_langs)]
missing_langs = (
results[results.isna().any(axis=1)]
.groupby("Model")["Language"]
.apply(list)
.to_dict()
)
for model, langs in missing_langs.items():
logger.info(
f"Model {model} is missing results for languages: {', '.join(langs)}"
)
models_with_nan = results[results.isna().any(axis=1)]["Model"].unique().tolist()
logger.info(f"Models with NaN values: {models_with_nan}")
results = results[~results["Model"].isin(models_with_nan)]
aggregated_df = (
results.pivot_table(
index="Model", values="Gap", aggfunc=lambda x: 100 * x.abs().sum()
)
.reset_index()
.sort_values("Gap")
)
best_model = aggregated_df.iloc[0]["Model"]
top_3_models = aggregated_df["Model"].head(3).tolist()
# main_df = gr.DataFrame(format_dataframe(model_results))
lang_df = results.pivot_table(
index="Model",
values="Gap",
columns="Language",
).reset_index()
# lang_df = gr.DataFrame(format_dataframe(lang_results, times_100=True))
# gr.Plot(fig1)
results["Gap"] = results["Gap"] * 100
barplot_fig = px.bar(
results.loc[results["Model"].isin(top_3_models)],
x="Language",
y="Gap",
color="Model",
title="Gaps by Language and Model (top 3, sorted by the best model)",
labels={
"Gap": "Sum of Absolute Gaps (%)",
"Language": "Language",
"Model": "Model",
},
barmode="group",
)
lang_order = (
lang_df.set_index("Model").loc[best_model].sort_values(ascending=False).index
)
logger.info(f"Lang order: {lang_order}")
barplot_fig.update_layout(
xaxis={"categoryorder": "array", "categoryarray": lang_order}
)
return aggregated_df, lang_df, barplot_fig, models_with_nan
with gr.Blocks() as fm_interface:
aggregated_df, lang_df, barplot_fig, model_with_nan = _populate_components(
show_common_langs=False
)
model_with_nans_md = gr.Markdown(_build_models_with_nan_md(model_with_nan))
gr.Markdown("### Sum of Absolute Gaps ⬇️")
aggregated_df_comp = gr.DataFrame(format_dataframe(aggregated_df))
gr.Markdown("#### F-M gaps by language")
lang_df_comp = gr.DataFrame(format_dataframe(lang_df, times_100=True))
barplot_fig_comp = gr.Plot(barplot_fig)
###################
# LIST MAIN TABS
###################
tabs = [fm_interface]
titles = ["F-M Setup"]
banner = """
<style>
.full-width-image {
width: 100%;
height: auto;
margin: 0;
padding: 0;
}
</style>
<div>
<img src="https://huggingface.co/spaces/g8a9/fair-asr-leaderboard/raw/main/twists_banner.png" alt="Twists Banner" class="full-width-image">
</div>
"""
###################
# MAIN INTERFACE
###################
with gr.Blocks() as demo:
gr.HTML(banner)
with gr.Row() as config_row:
show_common_langs = gr.CheckboxGroup(
choices=["Show only common languages"],
label="Main configuration",
)
include_datasets = gr.CheckboxGroup(
choices=["Mozilla CV 17"],
label="Include datasets",
value=["Mozilla CV 17"],
interactive=False,
)
show_common_langs.input(
build_components,
inputs=[show_common_langs],
outputs=[
aggregated_df_comp,
lang_df_comp,
barplot_fig_comp,
model_with_nans_md,
],
)
gr.TabbedInterface(tabs, titles)
gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
max_lines=6,
show_copy_button=True,
)
if __name__ == "__main__":
demo.launch()
|