File size: 6,101 Bytes
0542773
 
 
 
ad108b7
 
 
 
 
 
 
 
 
 
86e679c
ad108b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0542773
 
ad108b7
 
 
 
 
0542773
 
 
86e679c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad108b7
 
 
 
86e679c
 
9a7f023
86e679c
 
9a7f023
 
 
 
 
 
 
 
 
 
 
86e679c
 
 
 
 
ad108b7
 
 
 
 
0542773
86e679c
 
 
ad108b7
86e679c
ad108b7
 
 
 
86e679c
ad108b7
 
 
86e679c
 
0542773
ad108b7
0542773
86e679c
ad108b7
 
 
 
 
0542773
 
ad108b7
86e679c
 
 
 
 
 
 
 
 
 
 
 
 
 
ad108b7
86e679c
0542773
86e679c
 
0542773
86e679c
 
 
 
 
 
 
 
0542773
 
 
86e679c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0542773
86e679c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0542773
 
ad108b7
 
 
 
 
 
 
0542773
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import gradio as gr
import pandas as pd
import random
import plotly.express as px
from huggingface_hub import snapshot_download
import os
import logging

from config import (
    SETUPS,
    LOCAL_RESULTS_DIR,
    CITATION_BUTTON_TEXT,
    CITATION_BUTTON_LABEL,
)
from parsing import read_all_configs, get_common_langs

# Set up logging
logging.basicConfig(
    level=logging.INFO,
    format="%(asctime)s - %(name)s - %(levelname)s - %(message)s",
    handlers=[
        # logging.FileHandler("app.log"),
        logging.StreamHandler()
    ],
)

logger = logging.getLogger(__name__)


try:
    print("Saving results locally at:", LOCAL_RESULTS_DIR)
    snapshot_download(
        repo_id="g8a9/fair-asr-results",
        local_dir=LOCAL_RESULTS_DIR,
        repo_type="dataset",
        tqdm_class=None,
        etag_timeout=30,
        ignore_patterns=["*samples*", "*transcripts*"],
        token=os.environ.get("TOKEN"),
    )
except Exception as e:
    raise e


def format_dataframe(df, times_100=False):
    if times_100:
        df = df.map(lambda x: (f"{x * 100:.3f}%" if isinstance(x, (int, float)) else x))
    else:
        df = df.map(lambda x: (f"{x:.4f}" if isinstance(x, (int, float)) else x))
    return df


def _build_models_with_nan_md(models_with_nan):
    model_markups = [f"*{m}*" for m in models_with_nan]
    return f"""
We are currently hiding the results of {', '.join(model_markups)} because they don't support all languages.
"""


def build_components(show_common_langs):
    aggregated_df, lang_df, barplot_fig, models_with_nan = _populate_components(
        show_common_langs
    )
    models_with_nan_md = _build_models_with_nan_md(models_with_nan)

    return (
        gr.DataFrame(format_dataframe(aggregated_df)),
        gr.DataFrame(format_dataframe(lang_df, times_100=True)),
        gr.Plot(barplot_fig),
        gr.Markdown(models_with_nan_md, visible=len(models_with_nan) > 0),
    )


def _populate_components(show_common_langs):
    fm = SETUPS[0]
    setup = fm["majority_group"] + "_" + fm["minority_group"]
    results = read_all_configs(setup)

    if show_common_langs:
        common_langs = get_common_langs()
        logger.info(f"Common langs: {common_langs}")
        results = results[results["Language"].isin(common_langs)]

    missing_langs = (
        results[results.isna().any(axis=1)]
        .groupby("Model")["Language"]
        .apply(list)
        .to_dict()
    )
    for model, langs in missing_langs.items():
        logger.info(
            f"Model {model} is missing results for languages: {', '.join(langs)}"
        )

    models_with_nan = results[results.isna().any(axis=1)]["Model"].unique().tolist()
    logger.info(f"Models with NaN values: {models_with_nan}")
    results = results[~results["Model"].isin(models_with_nan)]

    aggregated_df = (
        results.pivot_table(
            index="Model", values="Gap", aggfunc=lambda x: 100 * x.abs().sum()
        )
        .reset_index()
        .sort_values("Gap")
    )
    best_model = aggregated_df.iloc[0]["Model"]
    top_3_models = aggregated_df["Model"].head(3).tolist()
    # main_df = gr.DataFrame(format_dataframe(model_results))

    lang_df = results.pivot_table(
        index="Model",
        values="Gap",
        columns="Language",
    ).reset_index()
    # lang_df = gr.DataFrame(format_dataframe(lang_results, times_100=True))

    # gr.Plot(fig1)
    results["Gap"] = results["Gap"] * 100
    barplot_fig = px.bar(
        results.loc[results["Model"].isin(top_3_models)],
        x="Language",
        y="Gap",
        color="Model",
        title="Gaps by Language and Model (top 3, sorted by the best model)",
        labels={
            "Gap": "Sum of Absolute Gaps (%)",
            "Language": "Language",
            "Model": "Model",
        },
        barmode="group",
    )
    lang_order = (
        lang_df.set_index("Model").loc[best_model].sort_values(ascending=False).index
    )
    logger.info(f"Lang order: {lang_order}")

    barplot_fig.update_layout(
        xaxis={"categoryorder": "array", "categoryarray": lang_order}
    )

    return aggregated_df, lang_df, barplot_fig, models_with_nan


with gr.Blocks() as fm_interface:
    aggregated_df, lang_df, barplot_fig, model_with_nan = _populate_components(
        show_common_langs=False
    )
    model_with_nans_md = gr.Markdown(_build_models_with_nan_md(model_with_nan))

    gr.Markdown("### Sum of Absolute Gaps ⬇️")
    aggregated_df_comp = gr.DataFrame(format_dataframe(aggregated_df))

    gr.Markdown("#### F-M gaps by language")
    lang_df_comp = gr.DataFrame(format_dataframe(lang_df, times_100=True))

    barplot_fig_comp = gr.Plot(barplot_fig)

###################
# LIST MAIN TABS
###################
tabs = [fm_interface]
titles = ["F-M Setup"]

banner = """
<style>
    .full-width-image {
        width: 100%;
        height: auto;
        margin: 0;
        padding: 0;
    }
</style>
<div>
    <img src="https://huggingface.co/spaces/g8a9/fair-asr-leaderboard/raw/main/twists_banner.png" alt="Twists Banner" class="full-width-image">
</div>
"""

###################
# MAIN INTERFACE
###################
with gr.Blocks() as demo:
    gr.HTML(banner)

    with gr.Row() as config_row:
        show_common_langs = gr.CheckboxGroup(
            choices=["Show only common languages"],
            label="Main configuration",
        )
        include_datasets = gr.CheckboxGroup(
            choices=["Mozilla CV 17"],
            label="Include datasets",
            value=["Mozilla CV 17"],
            interactive=False,
        )

        show_common_langs.input(
            build_components,
            inputs=[show_common_langs],
            outputs=[
                aggregated_df_comp,
                lang_df_comp,
                barplot_fig_comp,
                model_with_nans_md,
            ],
        )

    gr.TabbedInterface(tabs, titles)

    gr.Textbox(
        value=CITATION_BUTTON_TEXT,
        label=CITATION_BUTTON_LABEL,
        max_lines=6,
        show_copy_button=True,
    )

if __name__ == "__main__":
    demo.launch()