furusu commited on
Commit
7431481
·
verified ·
1 Parent(s): 38fe076

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +78 -0
app.py ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import AutoTokenizer, AutoModel
2
+ import torch
3
+ import faiss
4
+ import gradio as gr
5
+ import json
6
+
7
+ class FaissTextRetrieval:
8
+ def __init__(self, model_name):
9
+ self.tokenizer = AutoTokenizer.from_pretrained(model_name)
10
+ self.model = AutoModel.from_pretrained(model_name).eval()
11
+ self.device = "cpu"
12
+
13
+ self.all_index = faiss.read_index("data/all.index")
14
+ with open("data/all.json", "r") as f:
15
+ self.all_id2label = {int(k):v for k, v in json.load(f).items()}
16
+
17
+ self.general_index = faiss.read_index("data/general.index")
18
+ with open("data/general.json", "r") as f:
19
+ self.general_id2label = {int(k):v for k, v in json.load(f).items()}
20
+
21
+ self.character_index = faiss.read_index("data/character.index")
22
+ with open("data/character.json", "r") as f:
23
+ self.character_id2label = {int(k):v for k, v in json.load(f).items()}
24
+
25
+ def to(self, device, dtype=torch.float32):
26
+ self.device = device
27
+ self.dtype = dtype if "cuda" in device else torch.float32
28
+ self.model.to(device, dtype=dtype)
29
+
30
+ @torch.no_grad()
31
+ def average_pool(self, last_hidden_states, attention_mask):
32
+ last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0)
33
+ return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
34
+
35
+ @torch.no_grad()
36
+ def get_embeddings(self, input_texts: list):
37
+ batch_dict = self.tokenizer(input_texts, max_length=512, padding=True, truncation=True, return_tensors='pt')
38
+ input_ids = batch_dict["input_ids"].to(self.device)
39
+ attention_mask = batch_dict["attention_mask"].to(self.device)
40
+ outputs = self.model(input_ids=input_ids, attention_mask=attention_mask)
41
+ embeddings = self.average_pool(outputs.last_hidden_state, attention_mask)
42
+ embeddings = torch.nn.functional.normalize(embeddings, p=2, dim=1)
43
+
44
+ return embeddings
45
+
46
+ def search(self, query, top_k: int = 5, search_type = "all") -> list:
47
+ query = "query:" + query
48
+ query_embeddings = self.get_embeddings([query]).float().cpu().numpy()
49
+
50
+ if search_type == "all":
51
+ index = self.all_index
52
+ id2label = self.all_id2label
53
+ elif search_type == "general":
54
+ index = self.general_index
55
+ id2label = self.general_id2label
56
+ elif search_type == "character":
57
+ index = self.character_index
58
+ id2label = self.character_id2label
59
+
60
+ distances, indices = index.search(query_embeddings, top_k)
61
+ results = {id2label[idx]:distances[0][j] for j, idx in enumerate(indices[0])}
62
+
63
+ return results
64
+
65
+ def reset(self):
66
+ self.passage_texts = []
67
+ self.index = None
68
+
69
+ def main():
70
+ rag = FaissTextRetrieval("intfloat/multilingual-e5-large")
71
+
72
+ def search(query, search_type):
73
+ return rag.search(query, top_k=50, search_type=search_type)
74
+
75
+ gr.Interface(search, inputs=("textarea", gr.Radio(["all", "general", "character"])), outputs="label", title="Tag Search", description="Search for tags in the dataset.").launch()
76
+
77
+ if __name__ == "__main__":
78
+ main()