Spaces:
Running
Running
# reference: https://github.com/SHI-Labs/OneFormer/blob/main/oneformer/modeling/backbone/convnext.py | |
from functools import partial | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from timm.models.layers import DropPath | |
from detectron2.modeling import BACKBONE_REGISTRY, Backbone, ShapeSpec | |
from torch.cuda.amp import autocast | |
class Block(nn.Module): | |
r""" ConvNeXt Block. There are two equivalent implementations: | |
(1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W) | |
(2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back | |
We use (2) as we find it slightly faster in PyTorch | |
Args: | |
dim (int): Number of input channels. | |
drop_path (float): Stochastic depth rate. Default: 0.0 | |
layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6. | |
""" | |
def __init__(self, dim, drop_path=0., layer_scale_init_value=1e-6): | |
super().__init__() | |
self.dwconv = nn.Conv2d(dim, dim, kernel_size=7, padding=3, groups=dim) # depthwise conv | |
self.norm = LayerNorm(dim, eps=1e-6) | |
self.pwconv1 = nn.Linear(dim, 4 * dim) # pointwise/1x1 convs, implemented with linear layers | |
self.act = nn.GELU() | |
self.pwconv2 = nn.Linear(4 * dim, dim) | |
self.gamma = nn.Parameter(layer_scale_init_value * torch.ones((dim)), | |
requires_grad=True) if layer_scale_init_value > 0 else None | |
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
def forward(self, x): | |
input = x | |
x = self.dwconv(x) | |
x = x.permute(0, 2, 3, 1) # (N, C, H, W) -> (N, H, W, C) | |
x = self.norm(x) | |
x = self.pwconv1(x) | |
x = self.act(x) | |
x = self.pwconv2(x) | |
if self.gamma is not None: | |
x = self.gamma * x | |
x = x.permute(0, 3, 1, 2) # (N, H, W, C) -> (N, C, H, W) | |
x = input + self.drop_path(x) | |
return x | |
class LayerNorm(nn.Module): | |
r""" LayerNorm that supports two data formats: channels_last (default) or channels_first. | |
The ordering of the dimensions in the inputs. channels_last corresponds to inputs with | |
shape (batch_size, height, width, channels) while channels_first corresponds to inputs | |
with shape (batch_size, channels, height, width). | |
""" | |
def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"): | |
super().__init__() | |
self.weight = nn.Parameter(torch.ones(normalized_shape)) | |
self.bias = nn.Parameter(torch.zeros(normalized_shape)) | |
self.eps = eps | |
self.data_format = data_format | |
if self.data_format not in ["channels_last", "channels_first"]: | |
raise NotImplementedError | |
self.normalized_shape = (normalized_shape, ) | |
def forward(self, x): | |
with autocast(enabled=False): | |
x = x.float() | |
if self.data_format == "channels_last": | |
return F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps) | |
elif self.data_format == "channels_first": | |
u = x.mean(1, keepdim=True) | |
s = (x - u).pow(2).mean(1, keepdim=True) | |
x = (x - u) / torch.sqrt(s + self.eps) | |
x = self.weight[:, None, None] * x + self.bias[:, None, None] | |
return x | |
class ConvNeXt(nn.Module): | |
r""" ConvNeXt | |
A PyTorch impl of : `A ConvNet for the 2020s` - | |
https://arxiv.org/pdf/2201.03545.pdf | |
Args: | |
in_chans (int): Number of input image channels. Default: 3 | |
num_classes (int): Number of classes for classification head. Default: 1000 | |
depths (tuple(int)): Number of blocks at each stage. Default: [3, 3, 9, 3] | |
dims (int): Feature dimension at each stage. Default: [96, 192, 384, 768] | |
drop_path_rate (float): Stochastic depth rate. Default: 0. | |
layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6. | |
head_init_scale (float): Init scaling value for classifier weights and biases. Default: 1. | |
""" | |
def __init__(self, in_chans=3, depths=[3, 3, 9, 3], dims=[96, 192, 384, 768], | |
drop_path_rate=0., layer_scale_init_value=1e-6, out_indices=[0, 1, 2, 3], | |
): | |
super().__init__() | |
self.num_features = dims | |
self.downsample_layers = nn.ModuleList() # stem and 3 intermediate downsampling conv layers | |
stem = nn.Sequential( | |
nn.Conv2d(in_chans, dims[0], kernel_size=4, stride=4), | |
LayerNorm(dims[0], eps=1e-6, data_format="channels_first") | |
) | |
self.downsample_layers.append(stem) | |
for i in range(3): | |
downsample_layer = nn.Sequential( | |
LayerNorm(dims[i], eps=1e-6, data_format="channels_first"), | |
nn.Conv2d(dims[i], dims[i+1], kernel_size=2, stride=2), | |
) | |
self.downsample_layers.append(downsample_layer) | |
self.stages = nn.ModuleList() # 4 feature resolution stages, each consisting of multiple residual blocks | |
dp_rates=[x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] | |
cur = 0 | |
for i in range(4): | |
stage = nn.Sequential( | |
*[Block(dim=dims[i], drop_path=dp_rates[cur + j], | |
layer_scale_init_value=layer_scale_init_value) for j in range(depths[i])] | |
) | |
self.stages.append(stage) | |
cur += depths[i] | |
self.out_indices = out_indices | |
def forward_features(self, x): | |
outs = {} | |
for i in range(4): | |
# We add zero padding here for downstream tasks. | |
# ref: https://github.com/google-research/deeplab2/blob/main/model/pixel_encoder/convnext.py#L128 | |
if i == 0: | |
x = F.pad(x, (1, 2, 1, 2, 0, 0, 0, 0), "constant", 0) | |
else: | |
x = F.pad(x, (0, 1, 0, 1, 0, 0, 0, 0), "constant", 0) | |
x = self.downsample_layers[i](x) | |
x = self.stages[i](x) | |
if i in self.out_indices: | |
outs["res{}".format(i + 2)] = x | |
return outs | |
def forward(self, x): | |
x = self.forward_features(x) | |
return x | |
class D2ConvNeXt(ConvNeXt, Backbone): | |
def __init__(self, cfg, input_shape): | |
in_chans = cfg.MODEL.CONVNEXT.IN_CHANNELS | |
depths = cfg.MODEL.CONVNEXT.DEPTHS | |
dims = cfg.MODEL.CONVNEXT.DIMS | |
drop_path_rate = cfg.MODEL.CONVNEXT.DROP_PATH_RATE | |
layer_scale_init_value = cfg.MODEL.CONVNEXT.LSIT | |
out_indices = cfg.MODEL.CONVNEXT.OUT_INDICES | |
super().__init__( | |
in_chans=in_chans, | |
depths=depths, | |
dims=dims, | |
drop_path_rate=drop_path_rate, | |
layer_scale_init_value=layer_scale_init_value, | |
out_indices=out_indices, | |
) | |
self._out_features = cfg.MODEL.CONVNEXT.OUT_FEATURES | |
self._out_feature_strides = { | |
"res2": 4, | |
"res3": 8, | |
"res4": 16, | |
"res5": 32, | |
} | |
self._out_feature_channels = { | |
"res2": self.num_features[0], | |
"res3": self.num_features[1], | |
"res4": self.num_features[2], | |
"res5": self.num_features[3], | |
} | |
def forward(self, x): | |
""" | |
Args: | |
x: Tensor of shape (N,C,H,W). H, W must be a multiple of ``self.size_divisibility``. | |
Returns: | |
dict[str->Tensor]: names and the corresponding features | |
""" | |
assert ( | |
x.dim() == 4 | |
), f"ConvNeXt takes an input of shape (N, C, H, W). Got {x.shape} instead!" | |
outputs = {} | |
y = super().forward(x) | |
for k in y.keys(): | |
if k in self._out_features: | |
outputs[k] = y[k] | |
return outputs | |
def output_shape(self): | |
return { | |
name: ShapeSpec( | |
channels=self._out_feature_channels[name], stride=self._out_feature_strides[name] | |
) | |
for name in self._out_features | |
} | |
def size_divisibility(self): | |
return -1 |