Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,262 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
|
3 |
+
import os
|
4 |
+
import threading
|
5 |
+
import arrow
|
6 |
+
import time
|
7 |
+
import argparse
|
8 |
+
import logging
|
9 |
+
from dataclasses import dataclass
|
10 |
+
|
11 |
+
import torch
|
12 |
+
import sentencepiece as spm
|
13 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
14 |
+
from transformers.generation.streamers import BaseStreamer
|
15 |
+
from huggingface_hub import hf_hub_download, login
|
16 |
+
|
17 |
+
|
18 |
+
logger = logging.getLogger()
|
19 |
+
logger.setLevel("INFO")
|
20 |
+
|
21 |
+
gr_interface = None
|
22 |
+
|
23 |
+
VERSION = "0.1"
|
24 |
+
|
25 |
+
@dataclass
|
26 |
+
class DefaultArgs:
|
27 |
+
hf_model_name_or_path: str = "cyberagent/open-calm-1b"
|
28 |
+
spm_model_path: str = None
|
29 |
+
env: str = "dev"
|
30 |
+
port: int = 7860
|
31 |
+
make_public: bool = False
|
32 |
+
|
33 |
+
|
34 |
+
if not os.getenv("RUNNING_ON_HF_SPACE"):
|
35 |
+
parser = argparse.ArgumentParser(description="")
|
36 |
+
parser.add_argument("--hf_model_name_or_path", type=str, default="cyberagent/open-calm-small") # required=True)
|
37 |
+
parser.add_argument("--env", type=str, default="dev")
|
38 |
+
parser.add_argument("--port", type=int, default=7860)
|
39 |
+
parser.add_argument("--make_public", action='store_true')
|
40 |
+
args = parser.parse_args()
|
41 |
+
|
42 |
+
def load_model(
|
43 |
+
model_dir,
|
44 |
+
):
|
45 |
+
model = AutoModelForCausalLM.from_pretrained(args.hf_model_name_or_path, device_map="auto", torch_dtype=torch.float32)
|
46 |
+
if torch.cuda.is_available():
|
47 |
+
model = model.to("cuda:0")
|
48 |
+
return model
|
49 |
+
|
50 |
+
logging.info("Loading model")
|
51 |
+
model = load_model(args.hf_model_name_or_path)
|
52 |
+
tokenizer = AutoTokenizer.from_pretrained(args.hf_model_name_or_path)
|
53 |
+
logging.info("Finished loading model")
|
54 |
+
|
55 |
+
class Streamer(BaseStreamer):
|
56 |
+
def __init__(self, tokenizer):
|
57 |
+
self.tokenizer = tokenizer
|
58 |
+
self.num_invoked = 0
|
59 |
+
self.prompt = ""
|
60 |
+
self.generated_text = ""
|
61 |
+
self.ended = False
|
62 |
+
|
63 |
+
|
64 |
+
def put(self, t: torch.Tensor):
|
65 |
+
d = t.dim()
|
66 |
+
if d == 1:
|
67 |
+
pass
|
68 |
+
elif d == 2:
|
69 |
+
t = t[0]
|
70 |
+
else:
|
71 |
+
raise NotImplementedError
|
72 |
+
|
73 |
+
t = [int(x) for x in t.numpy()]
|
74 |
+
|
75 |
+
text = self.tokenizer.decode(t, skip_special_tokens=True)
|
76 |
+
|
77 |
+
if self.num_invoked == 0:
|
78 |
+
self.prompt = text
|
79 |
+
self.num_invoked += 1
|
80 |
+
return
|
81 |
+
|
82 |
+
self.generated_text += text
|
83 |
+
logging.debug(f"[streamer]: {self.generated_text}")
|
84 |
+
|
85 |
+
def end(self):
|
86 |
+
self.ended = True
|
87 |
+
|
88 |
+
def generate(
|
89 |
+
prompt,
|
90 |
+
max_new_tokens,
|
91 |
+
temperature,
|
92 |
+
repetition_penalty,
|
93 |
+
|
94 |
+
do_sample,
|
95 |
+
no_repeat_ngram_size,
|
96 |
+
):
|
97 |
+
log = dict(locals())
|
98 |
+
logging.debug(log)
|
99 |
+
print(log)
|
100 |
+
|
101 |
+
input_ids = tokenizer(prompt, return_tensors="pt")['input_ids'].to(model.device)
|
102 |
+
max_possilbe_new_tokens = model.config.max_position_embeddings - len(input_ids.squeeze(0))
|
103 |
+
max_possilbe_new_tokens = min(max_possilbe_new_tokens, max_new_tokens)
|
104 |
+
|
105 |
+
streamer = Streamer(tokenizer=tokenizer)
|
106 |
+
thr = threading.Thread(target=model.generate, args=(), kwargs=dict(
|
107 |
+
input_ids=input_ids,
|
108 |
+
do_sample=do_sample,
|
109 |
+
temperature=temperature,
|
110 |
+
repetition_penalty=repetition_penalty,
|
111 |
+
no_repeat_ngram_size=no_repeat_ngram_size,
|
112 |
+
max_new_tokens=max_possilbe_new_tokens,
|
113 |
+
streamer=streamer,
|
114 |
+
# max_length=4096,
|
115 |
+
# top_k=100,
|
116 |
+
# top_p=0.9,
|
117 |
+
# num_return_sequences=2,
|
118 |
+
# num_beams=2,
|
119 |
+
))
|
120 |
+
thr.start()
|
121 |
+
gen_tokens = model.generate(
|
122 |
+
input_ids=input_ids,
|
123 |
+
do_sample=do_sample,
|
124 |
+
temperature=temperature,
|
125 |
+
repetition_penalty=repetition_penalty,
|
126 |
+
no_repeat_ngram_size=no_repeat_ngram_size,
|
127 |
+
max_new_tokens=max_possilbe_new_tokens,
|
128 |
+
)
|
129 |
+
gen = tokenizer.decode(gen_tokens[0], skip_special_tokens=True)
|
130 |
+
|
131 |
+
while not streamer.ended:
|
132 |
+
time.sleep(0.05)
|
133 |
+
yield streamer.generated_text
|
134 |
+
|
135 |
+
# TODO: optimize for final few tokens
|
136 |
+
gen = streamer.generated_text
|
137 |
+
log.update(dict(
|
138 |
+
generation=gen,
|
139 |
+
version=VERSION,
|
140 |
+
time=str(arrow.now("+09:00"))))
|
141 |
+
logging.info(log)
|
142 |
+
yield gen
|
143 |
+
|
144 |
+
def process_feedback(
|
145 |
+
rating,
|
146 |
+
prompt,
|
147 |
+
generation,
|
148 |
+
|
149 |
+
max_new_tokens,
|
150 |
+
temperature,
|
151 |
+
repetition_penalty,
|
152 |
+
do_sample,
|
153 |
+
no_repeat_ngram_size,
|
154 |
+
):
|
155 |
+
log = dict(locals())
|
156 |
+
log.update(dict(
|
157 |
+
time=str(arrow.now("+09:00")),
|
158 |
+
version=VERSION,
|
159 |
+
))
|
160 |
+
logging.info(log)
|
161 |
+
|
162 |
+
if gr_interface:
|
163 |
+
gr_interface.close(verbose=False)
|
164 |
+
|
165 |
+
with gr.Blocks() as gr_interface:
|
166 |
+
with gr.Row():
|
167 |
+
gr.Markdown(f"# open-calm-small Playground ({VERSION})")
|
168 |
+
with gr.Row():
|
169 |
+
gr.Markdown("open-calm-small Playground")
|
170 |
+
with gr.Row():
|
171 |
+
|
172 |
+
# left panel
|
173 |
+
with gr.Column(scale=1):
|
174 |
+
|
175 |
+
# generation params
|
176 |
+
with gr.Box():
|
177 |
+
gr.Markdown("hyper parameters")
|
178 |
+
|
179 |
+
# hidden default params
|
180 |
+
do_sample = gr.Checkbox(True, label="Do Sample", visible=True)
|
181 |
+
no_repeat_ngram_size = gr.Slider(0, 10, value=5, step=1, label="No Repeat Ngram Size", visible=False)
|
182 |
+
|
183 |
+
# visible params
|
184 |
+
max_new_tokens = gr.Slider(
|
185 |
+
128,
|
186 |
+
min(512, model.config.max_position_embeddings),
|
187 |
+
value=128,
|
188 |
+
step=128,
|
189 |
+
label="max tokens",
|
190 |
+
)
|
191 |
+
temperature = gr.Slider(
|
192 |
+
0, 1, value=0.7, step=0.05, label="temperature",
|
193 |
+
)
|
194 |
+
repetition_penalty = gr.Slider(
|
195 |
+
1, 1.5, value=1.2, step=0.05, label="frequency penalty",
|
196 |
+
)
|
197 |
+
|
198 |
+
# grouping params for easier reference
|
199 |
+
gr_params = [
|
200 |
+
max_new_tokens,
|
201 |
+
temperature,
|
202 |
+
repetition_penalty,
|
203 |
+
|
204 |
+
do_sample,
|
205 |
+
no_repeat_ngram_size,
|
206 |
+
]
|
207 |
+
|
208 |
+
# right panel
|
209 |
+
with gr.Column(scale=2):
|
210 |
+
# user input block
|
211 |
+
with gr.Box():
|
212 |
+
textbox_prompt = gr.Textbox(
|
213 |
+
label="入力",
|
214 |
+
placeholder="AIによって私達の暮らしは、",
|
215 |
+
interactive=True,
|
216 |
+
lines=5,
|
217 |
+
value="AIによって私達の暮らしは、"
|
218 |
+
)
|
219 |
+
with gr.Box():
|
220 |
+
with gr.Row():
|
221 |
+
btn_stop = gr.Button(value="キャンセル", variant="secondary")
|
222 |
+
btn_submit = gr.Button(value="実行", variant="primary")
|
223 |
+
|
224 |
+
|
225 |
+
# model output block
|
226 |
+
with gr.Box():
|
227 |
+
textbox_generation = gr.Textbox(
|
228 |
+
label="応答",
|
229 |
+
lines=5,
|
230 |
+
value=""
|
231 |
+
)
|
232 |
+
|
233 |
+
# rating block
|
234 |
+
with gr.Row():
|
235 |
+
gr.Markdown("この応答に対するあなたの評価は?")
|
236 |
+
|
237 |
+
with gr.Box():
|
238 |
+
with gr.Row():
|
239 |
+
rating_options = [
|
240 |
+
"最悪",
|
241 |
+
"不合格",
|
242 |
+
"中立",
|
243 |
+
"合格",
|
244 |
+
"最高",
|
245 |
+
]
|
246 |
+
btn_ratings = [gr.Button(value=v) for v in rating_options]
|
247 |
+
|
248 |
+
# TODO: we might not need this for sharing with close groups
|
249 |
+
# with gr.Box():
|
250 |
+
# gr.Markdown("TODO:For more feedback link for google form")
|
251 |
+
|
252 |
+
# event handling
|
253 |
+
inputs = [textbox_prompt] + gr_params
|
254 |
+
click_event = btn_submit.click(generate, inputs, textbox_generation, queue=True)
|
255 |
+
btn_stop.click(None, None, None, cancels=click_event, queue=False)
|
256 |
+
|
257 |
+
for btn_rating in btn_ratings:
|
258 |
+
btn_rating.click(process_feedback, [btn_rating, textbox_prompt, textbox_generation] + gr_params, queue=False)
|
259 |
+
|
260 |
+
|
261 |
+
gr_interface.queue(max_size=32, concurrency_count=2)
|
262 |
+
gr_interface.launch(server_port=args.port, share=args.make_public)
|