Spaces:
Build error
Build error
Delete app.py
Browse files
app.py
DELETED
|
@@ -1,506 +0,0 @@
|
|
| 1 |
-
import pandas as pd
|
| 2 |
-
import numpy as np
|
| 3 |
-
import matplotlib.pyplot as plt
|
| 4 |
-
import seaborn as sns
|
| 5 |
-
import gradio as gr
|
| 6 |
-
import io
|
| 7 |
-
import base64
|
| 8 |
-
import tempfile
|
| 9 |
-
import os
|
| 10 |
-
from datetime import datetime
|
| 11 |
-
|
| 12 |
-
# --- Matplotlib Plot to Base64 ---
|
| 13 |
-
def fig_to_base64(fig):
|
| 14 |
-
"""Converts a Matplotlib figure to a base64 encoded PNG string."""
|
| 15 |
-
buf = io.BytesIO()
|
| 16 |
-
fig.savefig(buf, format='png', bbox_inches='tight')
|
| 17 |
-
plt.close(fig) # Close the figure to free memory
|
| 18 |
-
buf.seek(0)
|
| 19 |
-
img_str = base64.b64encode(buf.read()).decode('utf-8')
|
| 20 |
-
return f"data:image/png;base64,{img_str}"
|
| 21 |
-
|
| 22 |
-
# --- EDA Helper Functions (Adapted from Colab) ---
|
| 23 |
-
|
| 24 |
-
def get_initial_inspection_html(df):
|
| 25 |
-
"""Generates HTML for initial data inspection."""
|
| 26 |
-
html = "<h2>1. Initial Data Inspection</h2>"
|
| 27 |
-
# Head
|
| 28 |
-
html += "<h3>(a) First 5 Rows (Head):</h3>"
|
| 29 |
-
html += df.head().to_html(classes='table table-striped', border=1)
|
| 30 |
-
# Tail
|
| 31 |
-
html += "<h3>(b) Last 5 Rows (Tail):</h3>"
|
| 32 |
-
html += df.tail().to_html(classes='table table-striped', border=1)
|
| 33 |
-
# Shape
|
| 34 |
-
html += "<h3>(c) Dataset Shape:</h3>"
|
| 35 |
-
html += f"<p>Number of Rows: {df.shape[0]}</p>"
|
| 36 |
-
html += f"<p>Number of Columns: {df.shape[1]}</p>"
|
| 37 |
-
# Info
|
| 38 |
-
html += "<h3>(d) Data Types and Non-Null Counts (Info):</h3>"
|
| 39 |
-
buffer = io.StringIO()
|
| 40 |
-
df.info(buf=buffer)
|
| 41 |
-
info_str = buffer.getvalue()
|
| 42 |
-
html += f"<pre>{info_str}</pre>"
|
| 43 |
-
# Column Names
|
| 44 |
-
html += "<h3>(e) Column Names:</h3>"
|
| 45 |
-
html += f"<p><code>{list(df.columns)}</code></p>"
|
| 46 |
-
return html
|
| 47 |
-
|
| 48 |
-
def get_descriptive_stats_html(df):
|
| 49 |
-
"""Generates HTML for descriptive statistics."""
|
| 50 |
-
html = "<h2>2. Descriptive Statistics</h2>"
|
| 51 |
-
# Numerical
|
| 52 |
-
html += "<h3>(a) Numerical Columns Statistics:</h3>"
|
| 53 |
-
try:
|
| 54 |
-
num_stats = df.describe(include=np.number)
|
| 55 |
-
if not num_stats.empty:
|
| 56 |
-
html += num_stats.to_html(classes='table table-striped', border=1, float_format='%.2f')
|
| 57 |
-
else:
|
| 58 |
-
html += "<p>No numerical columns found.</p>"
|
| 59 |
-
except Exception as e:
|
| 60 |
-
html += f"<p>Error generating numerical stats: {e}</p>"
|
| 61 |
-
|
| 62 |
-
# Categorical
|
| 63 |
-
html += "<h3>(b) Categorical/Object Columns Statistics:</h3>"
|
| 64 |
-
try:
|
| 65 |
-
cat_stats = df.describe(include=['object', 'category'])
|
| 66 |
-
if not cat_stats.empty:
|
| 67 |
-
html += cat_stats.to_html(classes='table table-striped', border=1)
|
| 68 |
-
else:
|
| 69 |
-
html += "<p>No categorical/object columns found.</p>"
|
| 70 |
-
except Exception as e:
|
| 71 |
-
html += f"<p>Error generating categorical stats: {e}</p>"
|
| 72 |
-
return html
|
| 73 |
-
|
| 74 |
-
def identify_column_types_html(df):
|
| 75 |
-
"""Generates HTML listing identified column types."""
|
| 76 |
-
html = "<h2>3. Identifying Column Types</h2>"
|
| 77 |
-
numerical_cols = df.select_dtypes(include=np.number).columns.tolist()
|
| 78 |
-
categorical_cols = df.select_dtypes(include=['object', 'category']).columns.tolist()
|
| 79 |
-
datetime_cols = df.select_dtypes(include=['datetime', 'datetime64']).columns.tolist()
|
| 80 |
-
boolean_cols = df.select_dtypes(include=['bool']).columns.tolist()
|
| 81 |
-
other_cols = df.columns.difference(numerical_cols + categorical_cols + datetime_cols + boolean_cols).tolist()
|
| 82 |
-
|
| 83 |
-
html += f"<p><b>Numerical Columns ({len(numerical_cols)}):</b> <code>{numerical_cols}</code></p>"
|
| 84 |
-
html += f"<p><b>Categorical Columns ({len(categorical_cols)}):</b> <code>{categorical_cols}</code></p>"
|
| 85 |
-
html += f"<p><b>DateTime Columns ({len(datetime_cols)}):</b> <code>{datetime_cols}</code></p>"
|
| 86 |
-
html += f"<p><b>Boolean Columns ({len(boolean_cols)}):</b> <code>{boolean_cols}</code></p>"
|
| 87 |
-
if other_cols:
|
| 88 |
-
html += f"<p><b>Other/Unclassified Columns ({len(other_cols)}):</b> <code>{other_cols}</code></p>"
|
| 89 |
-
|
| 90 |
-
# Store for later use (return them)
|
| 91 |
-
return html, numerical_cols, categorical_cols # Return lists as well
|
| 92 |
-
|
| 93 |
-
def analyze_missing_values_html(df):
|
| 94 |
-
"""Generates HTML for missing value analysis."""
|
| 95 |
-
html = "<h2>4. Missing Value Analysis</h2>"
|
| 96 |
-
missing_values = df.isnull().sum()
|
| 97 |
-
missing_percent = (missing_values / len(df)) * 100
|
| 98 |
-
missing_table = pd.concat([missing_values, missing_percent], axis=1, keys=['Missing Count', 'Missing (%)'])
|
| 99 |
-
missing_table = missing_table[missing_table['Missing Count'] > 0].sort_values('Missing (%)', ascending=False)
|
| 100 |
-
|
| 101 |
-
if not missing_table.empty:
|
| 102 |
-
html += "<h3>(a) Columns with Missing Values:</h3>"
|
| 103 |
-
html += missing_table.to_html(classes='table table-striped', border=1, float_format='%.2f')
|
| 104 |
-
|
| 105 |
-
# Heatmap
|
| 106 |
-
html += "<h3>(b) Missing Values Heatmap:</h3>"
|
| 107 |
-
try:
|
| 108 |
-
fig, ax = plt.subplots(figsize=(15, 7))
|
| 109 |
-
sns.heatmap(df.isnull(), cbar=False, cmap='viridis', ax=ax)
|
| 110 |
-
ax.set_title('Heatmap of Missing Values per Column')
|
| 111 |
-
img_str = fig_to_base64(fig)
|
| 112 |
-
html += f'<img src="{img_str}" alt="Missing Values Heatmap"><br>'
|
| 113 |
-
html += "<p><i>Consider strategies like imputation or deletion based on the results.</i></p>"
|
| 114 |
-
except Exception as e:
|
| 115 |
-
html += f"<p>Could not generate missing value heatmap. Error: {e}</p>"
|
| 116 |
-
else:
|
| 117 |
-
html += "<p>No missing values found in the dataset. Great!</p>"
|
| 118 |
-
return html
|
| 119 |
-
|
| 120 |
-
def analyze_univariate_numerical_html(df, numerical_cols):
|
| 121 |
-
"""Generates HTML for univariate analysis of numerical columns."""
|
| 122 |
-
html = "<h2>5. Univariate Analysis (Numerical Columns)</h2>"
|
| 123 |
-
html += "<p><i>Analyzing distributions of individual numerical features using Histograms and Box Plots.</i></p>"
|
| 124 |
-
if not numerical_cols:
|
| 125 |
-
html += "<p>No numerical columns found to analyze.</p>"
|
| 126 |
-
return html
|
| 127 |
-
|
| 128 |
-
for col in numerical_cols:
|
| 129 |
-
html += f"<h3>Analyzing: '{col}'</h3>"
|
| 130 |
-
try:
|
| 131 |
-
# Create subplots
|
| 132 |
-
fig, axes = plt.subplots(1, 2, figsize=(16, 5)) # 1 row, 2 columns
|
| 133 |
-
|
| 134 |
-
# Plot Histogram
|
| 135 |
-
sns.histplot(df[col], kde=True, bins=30, ax=axes[0])
|
| 136 |
-
axes[0].set_title(f'Histogram of {col}')
|
| 137 |
-
axes[0].set_xlabel(col)
|
| 138 |
-
axes[0].set_ylabel('Frequency')
|
| 139 |
-
|
| 140 |
-
# Plot Box Plot
|
| 141 |
-
sns.boxplot(y=df[col], ax=axes[1])
|
| 142 |
-
axes[1].set_title(f'Box Plot of {col}')
|
| 143 |
-
axes[1].set_ylabel(col)
|
| 144 |
-
|
| 145 |
-
plt.tight_layout()
|
| 146 |
-
img_str = fig_to_base64(fig)
|
| 147 |
-
html += f'<img src="{img_str}" alt="Plots for {col}"><br>'
|
| 148 |
-
|
| 149 |
-
# Skewness
|
| 150 |
-
skewness = df[col].skew()
|
| 151 |
-
html += f"<p><b>Skewness:</b> {skewness:.2f} "
|
| 152 |
-
if skewness > 0.5: html += "(Moderately Right-Skewed)"
|
| 153 |
-
elif skewness < -0.5: html += "(Moderately Left-Skewed)"
|
| 154 |
-
else: html += "(Approximately Symmetric)"
|
| 155 |
-
html += "</p><hr>"
|
| 156 |
-
|
| 157 |
-
except Exception as e:
|
| 158 |
-
html += f"<p>Could not generate plots for {col}. Error: {e}</p><hr>"
|
| 159 |
-
|
| 160 |
-
return html
|
| 161 |
-
|
| 162 |
-
def analyze_univariate_categorical_html(df, categorical_cols):
|
| 163 |
-
"""Generates HTML for univariate analysis of categorical columns."""
|
| 164 |
-
html = "<h2>6. Univariate Analysis (Categorical Columns)</h2>"
|
| 165 |
-
html += "<p><i>Analyzing frequency distributions of individual categorical features using Count Plots.</i></p>"
|
| 166 |
-
if not categorical_cols:
|
| 167 |
-
html += "<p>No categorical/object columns found to analyze.</p>"
|
| 168 |
-
return html
|
| 169 |
-
|
| 170 |
-
plot_threshold = 50 # Max unique values for plotting
|
| 171 |
-
|
| 172 |
-
for col in categorical_cols:
|
| 173 |
-
html += f"<h3>Analyzing: '{col}'</h3>"
|
| 174 |
-
try:
|
| 175 |
-
unique_count = df[col].nunique()
|
| 176 |
-
html += f"<p><b>Number of Unique Values:</b> {unique_count}</p>"
|
| 177 |
-
|
| 178 |
-
if unique_count == 0:
|
| 179 |
-
html += "<p><i>Column has no values.</i></p><hr>"
|
| 180 |
-
continue
|
| 181 |
-
elif unique_count > plot_threshold:
|
| 182 |
-
html += f"<p><i>Skipping plot as unique value count ({unique_count}) exceeds threshold ({plot_threshold}). Showing Top 15 value counts instead.</i></p>"
|
| 183 |
-
top_15_counts = df[col].value_counts().head(15)
|
| 184 |
-
html += "<pre>" + top_15_counts.to_string() + "</pre><hr>"
|
| 185 |
-
else:
|
| 186 |
-
# Plot Count Plot
|
| 187 |
-
fig, ax = plt.subplots(figsize=(10, max(5, unique_count * 0.3))) # Adjust height
|
| 188 |
-
plot_order = df[col].value_counts().index
|
| 189 |
-
sns.countplot(y=df[col], order=plot_order, palette='viridis', ax=ax)
|
| 190 |
-
ax.set_title(f'Frequency Count of {col}')
|
| 191 |
-
ax.set_xlabel('Count')
|
| 192 |
-
ax.set_ylabel(col)
|
| 193 |
-
plt.tight_layout()
|
| 194 |
-
img_str = fig_to_base64(fig)
|
| 195 |
-
html += f'<img src="{img_str}" alt="Count Plot for {col}"><hr>'
|
| 196 |
-
|
| 197 |
-
except Exception as e:
|
| 198 |
-
html += f"<p>Could not generate plot/counts for {col}. Error: {e}</p><hr>"
|
| 199 |
-
|
| 200 |
-
return html
|
| 201 |
-
|
| 202 |
-
def analyze_bivariate_numerical_html(df, numerical_cols):
|
| 203 |
-
"""Generates HTML for bivariate analysis of numerical columns."""
|
| 204 |
-
html = "<h2>7. Bivariate Analysis (Numerical vs. Numerical)</h2>"
|
| 205 |
-
html += "<p><i>Analyzing relationships between pairs of numerical features using Correlation Matrix and Pair Plots.</i></p>"
|
| 206 |
-
|
| 207 |
-
if len(numerical_cols) < 2:
|
| 208 |
-
html += "<p>Need at least two numerical columns for this analysis.</p>"
|
| 209 |
-
return html
|
| 210 |
-
|
| 211 |
-
# Correlation Heatmap
|
| 212 |
-
html += "<h3>(a) Correlation Matrix Heatmap:</h3>"
|
| 213 |
-
try:
|
| 214 |
-
correlation_matrix = df[numerical_cols].corr()
|
| 215 |
-
fig, ax = plt.subplots(figsize=(12, 10))
|
| 216 |
-
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt=".2f", linewidths=.5, ax=ax)
|
| 217 |
-
ax.set_title('Correlation Matrix of Numerical Features')
|
| 218 |
-
img_str = fig_to_base64(fig)
|
| 219 |
-
html += f'<img src="{img_str}" alt="Correlation Matrix"><br>'
|
| 220 |
-
html += "<p><i>Interpretation: Values close to +1 indicate strong positive linear correlation, close to -1 indicate strong negative linear correlation, close to 0 indicate weak or no linear correlation.</i></p>"
|
| 221 |
-
except Exception as e:
|
| 222 |
-
html += f"<p>Could not generate correlation heatmap. Error: {e}</p>"
|
| 223 |
-
|
| 224 |
-
# Pair Plot
|
| 225 |
-
pairplot_threshold = 7 # Limit features for pairplot
|
| 226 |
-
html += f"<h3>(b) Pair Plot (Threshold: {pairplot_threshold} features):</h3>"
|
| 227 |
-
if len(numerical_cols) <= pairplot_threshold:
|
| 228 |
-
html += f"<p><i>Generating Pair Plot for {len(numerical_cols)} numerical features... (May take a moment)</i></p>"
|
| 229 |
-
try:
|
| 230 |
-
pair_plot_fig = sns.pairplot(df[numerical_cols], diag_kind='kde')
|
| 231 |
-
pair_plot_fig.fig.suptitle('Pair Plot of Numerical Features', y=1.02) # Adjust title position
|
| 232 |
-
# Convert the PairGrid object's figure to base64
|
| 233 |
-
img_str = fig_to_base64(pair_plot_fig.fig)
|
| 234 |
-
html += f'<img src="{img_str}" alt="Pair Plot"><br>'
|
| 235 |
-
except Exception as e:
|
| 236 |
-
html += f"<p>Could not generate pair plot. Error: {e}</p>"
|
| 237 |
-
html += "<p><i>Pairplots can sometimes fail with certain data types or distributions, or if memory is limited.</i></p>"
|
| 238 |
-
else:
|
| 239 |
-
html += f"<p><i>Skipping Pair Plot because the number of numerical features ({len(numerical_cols)}) exceeds the threshold ({pairplot_threshold}).</i></p>"
|
| 240 |
-
|
| 241 |
-
return html
|
| 242 |
-
|
| 243 |
-
def analyze_bivariate_num_cat_html(df, numerical_cols, categorical_cols):
|
| 244 |
-
"""Generates HTML for bivariate analysis of numerical vs. categorical columns."""
|
| 245 |
-
html = "<h2>8. Bivariate Analysis (Numerical vs. Categorical)</h2>"
|
| 246 |
-
html += "<p><i>Analyzing distributions of numerical features across different categories using Box Plots.</i></p>"
|
| 247 |
-
|
| 248 |
-
if not numerical_cols or not categorical_cols:
|
| 249 |
-
html += "<p>Need both numerical and categorical columns for this analysis.</p>"
|
| 250 |
-
return html
|
| 251 |
-
|
| 252 |
-
cat_nunique_threshold = 20
|
| 253 |
-
cats_to_analyze = [col for col in categorical_cols if df[col].nunique() <= cat_nunique_threshold]
|
| 254 |
-
|
| 255 |
-
if not cats_to_analyze:
|
| 256 |
-
html += f"<p>No categorical columns with a reasonable number of unique values (<= {cat_nunique_threshold}) found for plotting against numerical features.</p>"
|
| 257 |
-
return html
|
| 258 |
-
|
| 259 |
-
html += f"<p><i>Analyzing numerical columns against these categorical columns (max {cat_nunique_threshold} unique values): <code>{cats_to_analyze}</code></i></p>"
|
| 260 |
-
|
| 261 |
-
for num_col in numerical_cols:
|
| 262 |
-
for cat_col in cats_to_analyze:
|
| 263 |
-
html += f"<h3>Analyzing: '{num_col}' vs '{cat_col}'</h3>"
|
| 264 |
-
try:
|
| 265 |
-
# Check if category column has data
|
| 266 |
-
if df[cat_col].isnull().all() or df[cat_col].nunique() == 0:
|
| 267 |
-
html += f"<p><i>Skipping plot: Categorical column '{cat_col}' has no valid data or only one unique value after dropping NaNs.</i></p><hr>"
|
| 268 |
-
continue
|
| 269 |
-
|
| 270 |
-
fig, ax = plt.subplots(figsize=(12, 6))
|
| 271 |
-
sns.boxplot(x=df[cat_col], y=df[num_col], palette='viridis', ax=ax, order=sorted(df[cat_col].dropna().unique())) # Added order and dropna
|
| 272 |
-
ax.set_title(f'Box Plot of {num_col} by {cat_col}')
|
| 273 |
-
ax.set_xlabel(cat_col)
|
| 274 |
-
ax.set_ylabel(num_col)
|
| 275 |
-
|
| 276 |
-
# Rotate x-axis labels if they are long or numerous
|
| 277 |
-
if df[cat_col].nunique() > 5:
|
| 278 |
-
plt.xticks(rotation=45, ha='right')
|
| 279 |
-
|
| 280 |
-
plt.tight_layout()
|
| 281 |
-
img_str = fig_to_base64(fig)
|
| 282 |
-
html += f'<img src="{img_str}" alt="Box plot of {num_col} by {cat_col}"><hr>'
|
| 283 |
-
|
| 284 |
-
except Exception as e:
|
| 285 |
-
html += f"<p>Could not generate box plot for '{num_col}' vs '{cat_col}'. Error: {e}</p><hr>"
|
| 286 |
-
|
| 287 |
-
return html
|
| 288 |
-
|
| 289 |
-
def get_analysis_summary_html(df, missing_table_html):
|
| 290 |
-
"""Generates HTML for the summary section."""
|
| 291 |
-
html = "<h2>9. Analysis Summary & Next Steps</h2>"
|
| 292 |
-
html += "<p>This automated analysis provided a first look at the dataset's structure, content, distributions, and basic relationships.</p>"
|
| 293 |
-
html += "<h3>Key Observations (Auto-Generated Summary):</h3>"
|
| 294 |
-
html += f"<ul><li>The dataset has <b>{df.shape[0]}</b> rows and <b>{df.shape[1]}</b> columns.</li>"
|
| 295 |
-
# Add more sophisticated summary points based on analysis if desired
|
| 296 |
-
if "Columns with Missing Values" in missing_table_html:
|
| 297 |
-
html += "<li>Missing values were detected (see Section 4 for details).</li>"
|
| 298 |
-
else:
|
| 299 |
-
html += "<li>No missing values were found.</li>"
|
| 300 |
-
html += "<li>Review the plots in Sections 5-8 for insights into distributions and relationships.</li>"
|
| 301 |
-
html += "<li><i>(Note: This is a basic summary. Customize with specific findings based on the generated report.)</i></li></ul>"
|
| 302 |
-
|
| 303 |
-
html += "<h3>Potential Next Steps:</h3>"
|
| 304 |
-
html += "<ol>"
|
| 305 |
-
html += "<li><b>Data Cleaning:</b> Address missing values (imputation/deletion), correct data types if needed, handle outliers (if appropriate).</li>"
|
| 306 |
-
html += "<li><b>Feature Engineering:</b> Create new features from existing ones (e.g., extracting date parts, combining categories).</li>"
|
| 307 |
-
html += "<li><b>Deeper Analysis:</b> Explore relationships further (statistical tests, different plots, multivariate analysis).</li>"
|
| 308 |
-
html += "<li><b>Domain-Specific Analysis:</b> Apply subject matter expertise for targeted questions.</li>"
|
| 309 |
-
html += "<li><b>Modeling:</b> Prepare data and build machine learning models if applicable.</li>"
|
| 310 |
-
html += "</ol>"
|
| 311 |
-
return html
|
| 312 |
-
|
| 313 |
-
def get_bonus_guide_html():
|
| 314 |
-
"""Generates HTML for the bonus guide."""
|
| 315 |
-
html = """
|
| 316 |
-
<h2>Bonus: How to Understand & Read Any Dataset</h2>
|
| 317 |
-
<p>Approaching a new dataset systematically:</p>
|
| 318 |
-
<ol>
|
| 319 |
-
<li><strong>Understand the Context:</strong> Source, purpose, data dictionary, timeframe.</li>
|
| 320 |
-
<li><strong>Load and Get a First Look:</strong> Use tools like pandas, check dimensions (`.shape`), peek at data (`.head()`, `.tail()`).</li>
|
| 321 |
-
<li><strong>Examine Metadata and Structure:</strong> Check column names (`.columns`), data types (`.info()`), memory usage. Correct types if necessary.</li>
|
| 322 |
-
<li><strong>Summarize the Data:</strong> Use `.describe()` for numerical (mean, median, std, min/max, quartiles) and categorical (unique count, top value, frequency) summaries. Check `.value_counts()` for specific categories.</li>
|
| 323 |
-
<li><strong>Handle Missing Data:</strong> Identify (`.isnull().sum()`) and quantify missing values. Decide on a strategy (deletion, imputation).</li>
|
| 324 |
-
<li><strong>Visualize (EDA):</strong>
|
| 325 |
-
<ul>
|
| 326 |
-
<li><em>Univariate:</em> Histograms, density plots, box plots (numerical); Count plots (categorical).</li>
|
| 327 |
-
<li><em>Bivariate:</em> Scatter plots, correlation matrix/heatmap (numerical vs. numerical); Box plots, violin plots (numerical vs. categorical); Crosstabs, stacked bars (categorical vs. categorical).</li>
|
| 328 |
-
<li><em>Multivariate:</em> Pair plots, faceting.</li>
|
| 329 |
-
</ul>
|
| 330 |
-
</li>
|
| 331 |
-
<li><strong>Ask Questions:</strong> Formulate specific questions based on context and initial findings.</li>
|
| 332 |
-
<li><strong>Iterate and Document:</strong> Data understanding is iterative. Document findings and decisions.</li>
|
| 333 |
-
</ol>
|
| 334 |
-
"""
|
| 335 |
-
return html
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
# --- Main Gradio Function ---
|
| 339 |
-
|
| 340 |
-
def generate_eda_report(uploaded_file):
|
| 341 |
-
"""
|
| 342 |
-
Main function called by Gradio. Takes an uploaded file, performs EDA,
|
| 343 |
-
and returns the path to a generated HTML report file.
|
| 344 |
-
"""
|
| 345 |
-
start_time = datetime.now()
|
| 346 |
-
if uploaded_file is None:
|
| 347 |
-
raise gr.Error("No file uploaded! Please upload a CSV file.")
|
| 348 |
-
|
| 349 |
-
try:
|
| 350 |
-
# Set visualization styles globally for the run
|
| 351 |
-
sns.set(style="whitegrid")
|
| 352 |
-
plt.rcParams['figure.figsize'] = (12, 6)
|
| 353 |
-
pd.set_option('display.max_columns', 50)
|
| 354 |
-
pd.set_option('display.float_format', lambda x: '%.2f' % x)
|
| 355 |
-
|
| 356 |
-
# Check file size (example: 100MB limit)
|
| 357 |
-
file_size_mb = os.path.getsize(uploaded_file.name) / (1024 * 1024)
|
| 358 |
-
if file_size_mb > 100:
|
| 359 |
-
raise gr.Error(f"File size ({file_size_mb:.2f} MB) exceeds the 100 MB limit.")
|
| 360 |
-
|
| 361 |
-
# Read the CSV file
|
| 362 |
-
# Use the temporary path provided by Gradio's File component
|
| 363 |
-
df = pd.read_csv(uploaded_file.name)
|
| 364 |
-
|
| 365 |
-
# Start building the HTML report
|
| 366 |
-
html_content = """
|
| 367 |
-
<!DOCTYPE html>
|
| 368 |
-
<html lang="en">
|
| 369 |
-
<head>
|
| 370 |
-
<meta charset="UTF-8">
|
| 371 |
-
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
| 372 |
-
<title>Automated EDA Report</title>
|
| 373 |
-
<style>
|
| 374 |
-
body { font-family: sans-serif; margin: 20px; }
|
| 375 |
-
h1, h2, h3 { color: #333; }
|
| 376 |
-
h1 { text-align: center; border-bottom: 2px solid #eee; padding-bottom: 10px; }
|
| 377 |
-
h2 { border-bottom: 1px solid #eee; padding-bottom: 5px; margin-top: 30px; }
|
| 378 |
-
h3 { margin-top: 20px; color: #555; }
|
| 379 |
-
table { border-collapse: collapse; width: auto; margin-top: 15px; margin-bottom: 15px; }
|
| 380 |
-
th, td { border: 1px solid #ddd; padding: 8px; text-align: left; }
|
| 381 |
-
th { background-color: #f2f2f2; }
|
| 382 |
-
tr:nth-child(even) { background-color: #f9f9f9; }
|
| 383 |
-
pre { background-color: #f5f5f5; padding: 10px; border: 1px solid #ccc; overflow-x: auto; }
|
| 384 |
-
code { background-color: #eee; padding: 2px 4px; border-radius: 3px; }
|
| 385 |
-
img { max-width: 100%; height: auto; display: block; margin: 15px auto; border: 1px solid #ddd; }
|
| 386 |
-
hr { border: 0; height: 1px; background: #ddd; margin: 30px 0; }
|
| 387 |
-
</style>
|
| 388 |
-
</head>
|
| 389 |
-
<body>
|
| 390 |
-
<h1>📊 Automated Data Explorer & Visualizer Report 📊</h1>
|
| 391 |
-
"""
|
| 392 |
-
report_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
| 393 |
-
html_content += f"<p style='text-align:center;'><i>Report generated on: {report_time}</i></p>"
|
| 394 |
-
html_content += f"<p style='text-align:center;'><i>Input file: {os.path.basename(uploaded_file.name)}</i></p>"
|
| 395 |
-
|
| 396 |
-
|
| 397 |
-
# --- Run EDA Steps ---
|
| 398 |
-
# 1. Initial Inspection
|
| 399 |
-
html_content += get_initial_inspection_html(df)
|
| 400 |
-
html_content += "<hr>"
|
| 401 |
-
|
| 402 |
-
# 2. Descriptive Statistics
|
| 403 |
-
html_content += get_descriptive_stats_html(df)
|
| 404 |
-
html_content += "<hr>"
|
| 405 |
-
|
| 406 |
-
# 3. Identify Column Types
|
| 407 |
-
col_types_html, num_cols, cat_cols = identify_column_types_html(df)
|
| 408 |
-
html_content += col_types_html
|
| 409 |
-
html_content += "<hr>"
|
| 410 |
-
|
| 411 |
-
# 4. Missing Values
|
| 412 |
-
missing_html = analyze_missing_values_html(df)
|
| 413 |
-
html_content += missing_html
|
| 414 |
-
html_content += "<hr>"
|
| 415 |
-
|
| 416 |
-
# 5. Univariate Numerical
|
| 417 |
-
html_content += analyze_univariate_numerical_html(df, num_cols)
|
| 418 |
-
html_content += "<hr>"
|
| 419 |
-
|
| 420 |
-
# 6. Univariate Categorical
|
| 421 |
-
html_content += analyze_univariate_categorical_html(df, cat_cols)
|
| 422 |
-
html_content += "<hr>"
|
| 423 |
-
|
| 424 |
-
# 7. Bivariate Numerical vs Numerical
|
| 425 |
-
html_content += analyze_bivariate_numerical_html(df, num_cols)
|
| 426 |
-
html_content += "<hr>"
|
| 427 |
-
|
| 428 |
-
# 8. Bivariate Numerical vs Categorical
|
| 429 |
-
html_content += analyze_bivariate_num_cat_html(df, num_cols, cat_cols)
|
| 430 |
-
html_content += "<hr>"
|
| 431 |
-
|
| 432 |
-
# 9. Summary
|
| 433 |
-
html_content += get_analysis_summary_html(df, missing_html) # Pass missing_html to check if missing values were found
|
| 434 |
-
html_content += "<hr>"
|
| 435 |
-
|
| 436 |
-
# 10. Bonus Guide
|
| 437 |
-
html_content += get_bonus_guide_html()
|
| 438 |
-
|
| 439 |
-
# --- Finalize HTML ---
|
| 440 |
-
html_content += f"<p style='text-align:center; margin-top: 30px;'><i>--- End of Report ---</i></p>"
|
| 441 |
-
end_time = datetime.now()
|
| 442 |
-
duration = end_time - start_time
|
| 443 |
-
html_content += f"<p style='text-align:center; font-size: small; color: grey;'><i>Analysis completed in {duration.total_seconds():.2f} seconds.</i></p>"
|
| 444 |
-
html_content += """
|
| 445 |
-
</body>
|
| 446 |
-
</html>
|
| 447 |
-
"""
|
| 448 |
-
|
| 449 |
-
# Save HTML content to a temporary file
|
| 450 |
-
# Use tempfile for better cross-platform compatibility and automatic cleanup
|
| 451 |
-
with tempfile.NamedTemporaryFile(mode='w', delete=False, suffix=".html", encoding='utf-8') as temp_file:
|
| 452 |
-
temp_file.write(html_content)
|
| 453 |
-
report_path = temp_file.name # Get the path of the temp file
|
| 454 |
-
|
| 455 |
-
# Return the path to the generated HTML file for Gradio output
|
| 456 |
-
return report_path
|
| 457 |
-
|
| 458 |
-
except pd.errors.ParserError:
|
| 459 |
-
raise gr.Error("Error parsing CSV file. Please ensure it is a valid CSV format and delimiter is correctly inferred (usually comma).")
|
| 460 |
-
except FileNotFoundError:
|
| 461 |
-
raise gr.Error("Uploaded file not found. Please try uploading again.")
|
| 462 |
-
except ValueError as ve: # Catch specific value errors like Colab's upload error
|
| 463 |
-
raise gr.Error(f"Value Error: {ve}")
|
| 464 |
-
except Exception as e:
|
| 465 |
-
# Generic error catch - useful for debugging
|
| 466 |
-
import traceback
|
| 467 |
-
tb_str = traceback.format_exc()
|
| 468 |
-
print(f"An unexpected error occurred: {e}\n{tb_str}") # Log to console
|
| 469 |
-
raise gr.Error(f"An unexpected error occurred during analysis: {e}. Check console logs if running locally.")
|
| 470 |
-
|
| 471 |
-
|
| 472 |
-
# --- Gradio Interface Setup ---
|
| 473 |
-
|
| 474 |
-
description = """
|
| 475 |
-
**Effortless Dataset Insights 📊**
|
| 476 |
-
|
| 477 |
-
Upload your CSV dataset (max 100MB) and get an automated Exploratory Data Analysis (EDA) report.
|
| 478 |
-
The report includes:
|
| 479 |
-
1. Basic Info (Shape, Data Types, Head/Tail)
|
| 480 |
-
2. Descriptive Statistics
|
| 481 |
-
3. Missing Value Analysis & Heatmap
|
| 482 |
-
4. Univariate Analysis (Histograms, Box Plots, Count Plots)
|
| 483 |
-
5. Bivariate Analysis (Correlation Heatmap, Pair Plot [small datasets], Box Plots by Category)
|
| 484 |
-
6. Summary & Next Steps Guide
|
| 485 |
-
|
| 486 |
-
The output will be an HTML file that you can download and view in your browser.
|
| 487 |
-
"""
|
| 488 |
-
|
| 489 |
-
iface = gr.Interface(
|
| 490 |
-
fn=generate_eda_report,
|
| 491 |
-
inputs=gr.File(label="Upload CSV Dataset", file_types=[".csv"]),
|
| 492 |
-
outputs=gr.File(label="Download EDA Report (.html)"),
|
| 493 |
-
title="Effortless Dataset Insights",
|
| 494 |
-
description=description,
|
| 495 |
-
allow_flagging="never",
|
| 496 |
-
examples=[
|
| 497 |
-
# You can add paths to example CSV files here if you host them somewhere
|
| 498 |
-
# e.g., ["./examples/sample_data.csv"]
|
| 499 |
-
# Ensure these files exist if you uncomment this
|
| 500 |
-
],
|
| 501 |
-
theme=gr.themes.Soft() # Optional: Apply a theme
|
| 502 |
-
)
|
| 503 |
-
|
| 504 |
-
# --- Launch the App ---
|
| 505 |
-
if __name__ == "__main__":
|
| 506 |
-
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|