import os os.environ["CUDA_VISIBLE_DEVICES"] = "-1" # Force TensorFlow to use CPU import gradio as gr import tensorflow as tf import numpy as np from tensorflow.keras.preprocessing import image from PIL import Image from reportlab.lib.pagesizes import letter from reportlab.pdfgen import canvas from reportlab.lib import colors from reportlab.platypus import Table, TableStyle # Load the trained model model = tf.keras.models.load_model("my_keras_model.h5") # List of sample images sample_images = [f"samples/{img}" for img in os.listdir("samples") if img.endswith((".png", ".jpg", ".jpeg"))] # Function to process X-ray and generate a PDF report def generate_report(name, age, gender, weight, height, address, parent_name, allergies, cause, xray): image_size = (224, 224) def predict_fracture(xray_path): img = Image.open(xray_path).resize(image_size) img_array = image.img_to_array(img) / 255.0 img_array = np.expand_dims(img_array, axis=0) prediction = model.predict(img_array)[0][0] return prediction # Predict fracture prediction = predict_fracture(xray) diagnosed_class = "Normal" if prediction > 0.5 else "Fractured" severity = "Mild" if prediction < 0.3 else "Moderate" if prediction < 0.7 else "Severe" # Hospital details hospital_name = "City Care Hospital" hospital_address = "123 Health Street, MedCity, India" doctor_name = "Dr. Anil Sharma (Orthopedic Specialist)" # Save X-ray image for report img = Image.open(xray).resize((300, 300)) img_path = f"{name}_xray.png" img.save(img_path) # Generate PDF report report_path = f"{name}_fracture_report.pdf" c = canvas.Canvas(report_path, pagesize=letter) # Set page margins c.translate(20, 20) # Report title c.setFont("Helvetica-Bold", 16) c.drawString(180, 750, hospital_name) c.setFont("Helvetica", 12) c.drawString(140, 735, hospital_address) c.drawString(180, 720, f"Attending Doctor: {doctor_name}") # Patient details patient_data = [ ["Patient Name", name[:50]], ["Age", age], ["Gender", gender], ["Parent's Name", parent_name[:50]], ["Address", address[:70]], ["Weight", f"{weight} kg"], ["Height", f"{height} cm"], ["Allergies", allergies[:50] if allergies else "None"], ["Cause of Injury", cause[:50] if cause else "Not Provided"], ["Diagnosis", diagnosed_class], ["Injury Severity", severity] ] # Format and align tables def format_table(data): table = Table(data, colWidths=[200, 350]) table.setStyle(TableStyle([ ('BACKGROUND', (0, 0), (-1, 0), colors.darkblue), ('TEXTCOLOR', (0, 0), (-1, 0), colors.whitesmoke), ('ALIGN', (0, 0), (-1, -1), 'CENTER'), ('FONTNAME', (0, 0), (-1, 0), 'Helvetica-Bold'), ('BOTTOMPADDING', (0, 0), (-1, 0), 12), ('GRID', (0, 0), (-1, -1), 1, colors.black), ('VALIGN', (0, 0), (-1, -1), 'MIDDLE') ])) return table # Draw patient details table patient_table = format_table(patient_data) patient_table.wrapOn(c, 450, 500) patient_table.drawOn(c, 50, 620) # Load and insert X-ray image c.drawInlineImage(img_path, 50, 350, width=250, height=250) c.setFont("Helvetica-Bold", 12) c.drawString(120, 320, f"Fractured: {'Yes' if diagnosed_class == 'Fractured' else 'No'}") # Injury details c.setFont("Helvetica-Bold", 14) c.drawString(50, 270, "Injury Details and Treatment Recommendations") c.setFont("Helvetica", 12) c.drawString(50, 250, "• Immobilization and pain management") c.drawString(50, 235, "• Follow-up X-rays required") c.drawString(50, 220, "• Surgical intervention if needed") c.drawString(50, 205, "• Physiotherapy for recovery") c.save() return report_path # Return path for auto-download # Function to select a sample image def use_sample_image(sample_image_path): return sample_image_path # Returns selected sample image filepath # Define Gradio Interface with gr.Blocks() as app: gr.Markdown("## **Bone Fracture Detection System**") # Informative Blog Section with gr.Accordion("Bone Fractures - Symptoms, Causes, & Treatment", open=True): gr.Markdown(""" **A fracture** is a break or crack in a bone caused by excessive force. **Common Causes:** - Traumatic injuries (sports, accidents, falls) - Osteoporosis or cancer (weakened bones) **Symptoms:** - Severe pain, swelling, bruising - Deformity or inability to use the limb **Diagnosis:** - X-rays, CT scans, MRI scans **Treatment:** - Plaster casts, splints, surgery if needed - Pain management and physiotherapy **First Aid:** - Immobilize the area - Apply a cold pack - Seek medical help immediately """) # Patient Details Form with gr.Row(): name = gr.Textbox(label="Patient Name", max_length=50) age = gr.Number(label="Age") gender = gr.Radio(["Male", "Female", "Other"], label="Gender") with gr.Row(): parent_name = gr.Textbox(label="Parent's Name", max_length=50) address = gr.Textbox(label="Address", max_length=70) with gr.Row(): weight = gr.Number(label="Weight (kg)") height = gr.Number(label="Height (cm)") with gr.Row(): allergies = gr.Textbox(label="Allergies (if any, max 50 chars)", max_length=50) cause = gr.Textbox(label="Cause of Injury (max 50 chars)", max_length=50) with gr.Row(): xray = gr.Image(type="filepath", label="Upload X-ray Image") with gr.Row(): sample_selector = gr.Dropdown(choices=sample_images, label="Use Sample Image") select_button = gr.Button("Load Sample Image") submit_button = gr.Button("Generate Report") output_file = gr.File(label="Download Report") select_button.click(use_sample_image, inputs=[sample_selector], outputs=[xray]) submit_button.click( generate_report, inputs=[name, age, gender, weight, height, address, parent_name, allergies, cause, xray], outputs=[output_file], ) # Launch the Gradio app if __name__ == "__main__": app.launch()