Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = "-1" # Force TensorFlow to use CPU
|
| 3 |
+
|
| 4 |
+
import gradio as gr
|
| 5 |
+
import tensorflow as tf
|
| 6 |
+
import numpy as np
|
| 7 |
+
from tensorflow.keras.preprocessing import image
|
| 8 |
+
from PIL import Image
|
| 9 |
+
from reportlab.lib.pagesizes import letter
|
| 10 |
+
from reportlab.pdfgen import canvas
|
| 11 |
+
from reportlab.lib import colors
|
| 12 |
+
from reportlab.platypus import Table, TableStyle
|
| 13 |
+
|
| 14 |
+
# Load the trained model
|
| 15 |
+
model = tf.keras.models.load_model("my_keras_model.h5")
|
| 16 |
+
|
| 17 |
+
# Read HTML content from `re.html`
|
| 18 |
+
with open("templates/re.html", "r", encoding="utf-8") as file:
|
| 19 |
+
html_content = file.read()
|
| 20 |
+
|
| 21 |
+
# List of sample images
|
| 22 |
+
sample_images = [f"samples/{img}" for img in os.listdir("samples") if img.endswith((".png", ".jpg", ".jpeg"))]
|
| 23 |
+
|
| 24 |
+
# Function to process X-ray and generate a PDF report
|
| 25 |
+
def generate_report(name, age, gender, weight, height, allergies, cause, xray):
|
| 26 |
+
image_size = (224, 224)
|
| 27 |
+
|
| 28 |
+
def predict_fracture(xray_path):
|
| 29 |
+
img = Image.open(xray_path).resize(image_size)
|
| 30 |
+
img_array = image.img_to_array(img) / 255.0
|
| 31 |
+
img_array = np.expand_dims(img_array, axis=0)
|
| 32 |
+
prediction = model.predict(img_array)[0][0]
|
| 33 |
+
return prediction
|
| 34 |
+
|
| 35 |
+
# Predict fracture
|
| 36 |
+
prediction = predict_fracture(xray)
|
| 37 |
+
diagnosed_class = "normal" if prediction > 0.5 else "Fractured"
|
| 38 |
+
|
| 39 |
+
# Injury severity classification
|
| 40 |
+
severity = "Mild" if prediction < 0.3 else "Moderate" if prediction < 0.7 else "Severe"
|
| 41 |
+
|
| 42 |
+
# Treatment details table
|
| 43 |
+
treatment_data = [
|
| 44 |
+
["Severity Level", "Recommended Treatment", "Recovery Duration"],
|
| 45 |
+
["Mild", "Rest, pain relievers, and follow-up X-ray", "4-6 weeks"],
|
| 46 |
+
["Moderate", "Plaster cast, minor surgery if needed", "6-10 weeks"],
|
| 47 |
+
["Severe", "Major surgery, metal implants, physiotherapy", "Several months"]
|
| 48 |
+
]
|
| 49 |
+
|
| 50 |
+
# Estimated cost & duration table
|
| 51 |
+
cost_duration_data = [
|
| 52 |
+
["Hospital Type", "Estimated Cost", "Recovery Time"],
|
| 53 |
+
["Government Hospital", f"₹{2000 if severity == 'Mild' else 8000 if severity == 'Moderate' else 20000} - ₹{5000 if severity == 'Mild' else 15000 if severity == 'Moderate' else 50000}", "4-12 weeks"],
|
| 54 |
+
["Private Hospital", f"₹{10000 if severity == 'Mild' else 30000 if severity == 'Moderate' else 100000}+", "6 weeks - Several months"]
|
| 55 |
+
]
|
| 56 |
+
|
| 57 |
+
# Save X-ray image for report
|
| 58 |
+
img = Image.open(xray).resize((300, 300))
|
| 59 |
+
img_path = f"{name}_xray.png"
|
| 60 |
+
img.save(img_path)
|
| 61 |
+
|
| 62 |
+
# Generate PDF report
|
| 63 |
+
report_path = f"{name}_fracture_report.pdf"
|
| 64 |
+
c = canvas.Canvas(report_path, pagesize=letter)
|
| 65 |
+
|
| 66 |
+
# Report title
|
| 67 |
+
c.setFont("Helvetica-Bold", 16)
|
| 68 |
+
c.drawString(200, 770, "Bone Fracture Detection Report")
|
| 69 |
+
|
| 70 |
+
# Patient details table
|
| 71 |
+
patient_data = [
|
| 72 |
+
["Patient Name", name],
|
| 73 |
+
["Age", age],
|
| 74 |
+
["Gender", gender],
|
| 75 |
+
["Weight", f"{weight} kg"],
|
| 76 |
+
["Height", f"{height} cm"],
|
| 77 |
+
["Allergies", allergies if allergies else "None"],
|
| 78 |
+
["Cause of Injury", cause if cause else "Not Provided"],
|
| 79 |
+
["Diagnosis", diagnosed_class],
|
| 80 |
+
["Injury Severity", severity]
|
| 81 |
+
]
|
| 82 |
+
|
| 83 |
+
# Format and align tables
|
| 84 |
+
def format_table(data):
|
| 85 |
+
table = Table(data, colWidths=[270, 270]) # Set 90% width
|
| 86 |
+
table.setStyle(TableStyle([
|
| 87 |
+
('BACKGROUND', (0, 0), (-1, 0), colors.darkblue),
|
| 88 |
+
('TEXTCOLOR', (0, 0), (-1, 0), colors.whitesmoke),
|
| 89 |
+
('ALIGN', (0, 0), (-1, -1), 'CENTER'),
|
| 90 |
+
('FONTNAME', (0, 0), (-1, 0), 'Helvetica-Bold'),
|
| 91 |
+
('BOTTOMPADDING', (0, 0), (-1, 0), 12),
|
| 92 |
+
('GRID', (0, 0), (-1, -1), 1, colors.black),
|
| 93 |
+
('VALIGN', (0, 0), (-1, -1), 'MIDDLE')
|
| 94 |
+
]))
|
| 95 |
+
return table
|
| 96 |
+
|
| 97 |
+
# Draw patient details table
|
| 98 |
+
patient_table = format_table(patient_data)
|
| 99 |
+
patient_table.wrapOn(c, 480, 500)
|
| 100 |
+
patient_table.drawOn(c, 50, 620)
|
| 101 |
+
|
| 102 |
+
# Load and insert X-ray image
|
| 103 |
+
c.drawInlineImage(img_path, 50, 320, width=250, height=250)
|
| 104 |
+
c.setFont("Helvetica-Bold", 12)
|
| 105 |
+
c.drawString(120, 290, f"Fractured: {'Yes' if diagnosed_class == 'Fractured' else 'No'}")
|
| 106 |
+
|
| 107 |
+
# Draw treatment and cost tables
|
| 108 |
+
treatment_table = format_table(treatment_data)
|
| 109 |
+
treatment_table.wrapOn(c, 480, 200)
|
| 110 |
+
treatment_table.drawOn(c, 50, 200)
|
| 111 |
+
|
| 112 |
+
cost_table = format_table(cost_duration_data)
|
| 113 |
+
cost_table.wrapOn(c, 480, 150)
|
| 114 |
+
cost_table.drawOn(c, 50, 80)
|
| 115 |
+
|
| 116 |
+
c.save()
|
| 117 |
+
|
| 118 |
+
return report_path # Return path for auto-download
|
| 119 |
+
|
| 120 |
+
# Function to select a sample image
|
| 121 |
+
def use_sample_image(sample_image_path):
|
| 122 |
+
return sample_image_path # Returns selected sample image filepath
|
| 123 |
+
|
| 124 |
+
# Define Gradio Interface
|
| 125 |
+
with gr.Blocks() as app:
|
| 126 |
+
gr.HTML(html_content) # Display `re.html` content in Gradio
|
| 127 |
+
gr.Markdown("## Bone Fracture Detection System")
|
| 128 |
+
|
| 129 |
+
with gr.Row():
|
| 130 |
+
name = gr.Textbox(label="Patient Name")
|
| 131 |
+
age = gr.Number(label="Age")
|
| 132 |
+
gender = gr.Radio(["Male", "Female", "Other"], label="Gender")
|
| 133 |
+
|
| 134 |
+
with gr.Row():
|
| 135 |
+
weight = gr.Number(label="Weight (kg)")
|
| 136 |
+
height = gr.Number(label="Height (cm)")
|
| 137 |
+
|
| 138 |
+
with gr.Row():
|
| 139 |
+
allergies = gr.Textbox(label="Allergies (if any)")
|
| 140 |
+
cause = gr.Textbox(label="Cause of Injury")
|
| 141 |
+
|
| 142 |
+
with gr.Row():
|
| 143 |
+
xray = gr.Image(type="filepath", label="Upload X-ray Image")
|
| 144 |
+
|
| 145 |
+
with gr.Row():
|
| 146 |
+
sample_selector = gr.Dropdown(choices=sample_images, label="Use Sample Image")
|
| 147 |
+
select_button = gr.Button("Load Sample Image")
|
| 148 |
+
|
| 149 |
+
submit_button = gr.Button("Generate Report")
|
| 150 |
+
output_file = gr.File(label="Download Report")
|
| 151 |
+
|
| 152 |
+
select_button.click(use_sample_image, inputs=[sample_selector], outputs=[xray])
|
| 153 |
+
|
| 154 |
+
submit_button.click(
|
| 155 |
+
generate_report,
|
| 156 |
+
inputs=[name, age, gender, weight, height, allergies, cause, xray],
|
| 157 |
+
outputs=[output_file],
|
| 158 |
+
)
|
| 159 |
+
|
| 160 |
+
# Launch the Gradio app
|
| 161 |
+
if __name__ == "__main__":
|
| 162 |
+
app.launch()
|