ftx7go's picture
Update app.py
d14ed0b verified
raw
history blame
8.36 kB
from fastapi import FastAPI, File, UploadFile from fastapi.responses import HTMLResponse from transformers import pipeline from PIL import Image, ImageDraw import numpy as np import io import uvicorn import base64 app = FastAPI() # Chargement des modèles def load_models(): return { "KnochenAuge": pipeline("object-detection", model="D3STRON/bone-fracture-detr"), "KnochenWächter": pipeline("image-classification", model="Heem2/bone-fracture-detection-using-xray"), "RöntgenMeister": pipeline("image-classification", model="nandodeomkar/autotrain-fracture-detection-using-google-vit-base-patch-16-54382127388") } models = load_models() def translate_label(label): translations = { "fracture": "Knochenbruch", "no fracture": "Kein Knochenbruch", "normal": "Normal", "abnormal": "Auffällig", "F1": "Knochenbruch", "NF": "Kein Knochenbruch" } return translations.get(label.lower(), label) def create_heatmap_overlay(image, box, score): overlay = Image.new('RGBA', image.size, (0, 0, 0, 0)) draw = ImageDraw.Draw(overlay) x1, y1 = box['xmin'], box['ymin'] x2, y2 = box['xmax'], box['ymax'] if score > 0.8: fill_color = (255, 0, 0, 100) border_color = (255, 0, 0, 255) elif score > 0.6: fill_color = (255, 165, 0, 100) border_color = (255, 165, 0, 255) else: fill_color = (255, 255, 0, 100) border_color = (255, 255, 0, 255) draw.rectangle([x1, y1, x2, y2], fill=fill_color) draw.rectangle([x1, y1, x2, y2], outline=border_color, width=2) return overlay def draw_boxes(image, predictions): result_image = image.copy().convert('RGBA') for pred in predictions: box = pred['box'] score = pred['score'] overlay = create_heatmap_overlay(image, box, score) result_image = Image.alpha_composite(result_image, overlay) draw = ImageDraw.Draw(result_image) temp = 36.5 + (score * 2.5) label = f"{translate_label(pred['label'])} ({score:.1%} • {temp:.1f}°C)" text_bbox = draw.textbbox((box['xmin'], box['ymin']-20), label) draw.rectangle(text_bbox, fill=(0, 0, 0, 180)) draw.text( (box['xmin'], box['ymin']-20), label, fill=(255, 255, 255, 255) ) return result_image def image_to_base64(image): buffered = io.BytesIO() image.save(buffered, format="PNG") img_str = base64.b64encode(buffered.getvalue()).decode() return f"data:image/png;base64,{img_str}" COMMON_STYLES = """ body { font-family: system-ui, -apple-system, sans-serif; background: #f0f2f5; margin: 0; padding: 20px; color: #1a1a1a; } ::-webkit-scrollbar { width: 8px; height: 8px; } ::-webkit-scrollbar-track { background: transparent; } ::-webkit-scrollbar-thumb { background-color: rgba(156, 163, 175, 0.5); border-radius: 4px; } .container { max-width: 1200px; margin: 0 auto; background: white; padding: 20px; border-radius: 10px; box-shadow: 0 2px 4px rgba(0,0,0,0.1); } .button { background: #2d2d2d; color: white; border: none; padding: 12px 30px; border-radius: 8px; cursor: pointer; font-size: 1.1em; transition: all 0.3s ease; position: relative; } .button:hover { background: #404040; } @keyframes progress { 0% { width: 0; } 100% { width: 100%; } } .button-progress { position: absolute; bottom: 0; left: 0; height: 4px; background: rgba(255, 255, 255, 0.5); width: 0; } .button:active .button-progress { animation: progress 2s linear forwards; } img { max-width: 100%; height: auto; border-radius: 8px; } @keyframes blink { 0% { opacity: 1; } 50% { opacity: 0; } 100% { opacity: 1; } } #loading { display: none; color: white; margin-top: 10px; animation: blink 1s infinite; text-align: center; } """ @app.get("/", response_class=HTMLResponse) async def main(): content = f""" <!DOCTYPE html> <html> <head> <title>Fraktur Detektion</title> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <style> {COMMON_STYLES} .upload-section {{ background: #2d2d2d; padding: 40px; border-radius: 12px; margin: 20px 0; text-align: center; border: 2px dashed #404040; transition: all 0.3s ease; color: white; }} .upload-section:hover {{ border-color: #555; }} input[type="file"] {{ font-size: 1.1em; margin: 20px 0; color: white; }} input[type="file"]::file-selector-button {{ font-size: 1em; padding: 10px 20px; border-radius: 8px; border: 1px solid #404040; background: #2d2d2d; color: white; transition: all 0.3s ease; cursor: pointer; }} input[type="file"]::file-selector-button:hover {{ background: #404040; }} .confidence-slider {{ width: 100%; max-width: 300px; margin: 20px auto; }} input[type="range"] {{ width: 100%; height: 8px; border-radius: 4px; background: #404040; outline: none; transition: all 0.3s ease; -webkit-appearance: none; }} input[type="range"]::-webkit-slider-thumb {{ -webkit-appearance: none; width: 20px; height: 20px; border-radius: 50%; background: white; cursor: pointer; border: none; }} </style> </head> <body> <div class="container"> <div class="upload-section"> <form action="/analyze" method="post" enctype="multipart/form-data" onsubmit="document.getElementById('loading').style.display = 'block';"> <div> <input type="file" name="file" accept="image/*" required> </div> <div class="confidence-slider"> <label for="threshold">Konfidenzschwelle: <span id="thresholdValue">0.60</span></label> <input type="range" id="threshold" name="threshold" min="0" max="1" step="0.05" value="0.60" oninput="document.getElementById('thresholdValue').textContent = parseFloat(this.value).toFixed(2)"> </div> <button type="submit" class="button"> Analysieren <div class="button-progress"></div> </button> <div id="loading">Loading...</div> </form> </div> </div> </body> </html> """ return content @app.post("/analyze", response_class=HTMLResponse) async def analyze_file(file: UploadFile = File(...)): try: contents = await file.read() image = Image.open(io.BytesIO(contents)) predictions_watcher = models["KnochenWächter"](image) predictions_master = models["RöntgenMeister"](image) predictions_locator = models["KnochenAuge"](image) filtered_preds = [p for p in predictions_locator if p['score'] >= 0.6] if filtered_preds: result_image = draw_boxes(image, filtered_preds) else: result_image = image result_image_b64 = image_to_base64(result_image) results_html = f""" <!DOCTYPE html> <html> <head> <title>Ergebnisse</title> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <style> {COMMON_STYLES} .results-grid {{ display: grid; grid-template-columns: 1fr 1fr; gap: 20px; margin-top: 20px; }} .result-box {{ background: white; padding: 20px; border-radius: 12px; margin: 10px 0; border: 1px solid #e9ecef; }} .score-high {{ color: #0066cc; font-weight: bold; }} .score-medium {{ color: #ffa500; font-weight: bold; }} .back-button {{ display: inline-block; text-decoration: none; margin-top: 20px; }} h3 {{ color: #0066cc; margin-top: 0; }} @media (max-width: 768px) {{ .results-grid {{ grid-template-columns: 1fr; }} }} </style> </head> <body> <div class="container"> <div class="results-grid"> <div> <div class="result-box"><h3>KnochenWächter</h3> """ for pred in predictions_watcher: confidence_class = "score-high" if pred['score'] > 0.7 else "score-medium" results_html += f""" <div> <span class="{confidence_class}">{pred['score']:.1%}</span> - {translate_label(pred['label'])} </div> """ results_html += "</div>" results_html += "<div class='result-box'><h3>RöntgenMeister</h3>" for pred in predictions_master: confidence_class = "score-high" if pred['score'] > 0.7 else "score-medium" results_html += f""" <div> <span class="{confidence_class}">{pred['score']:.1%}</span> - {translate_label(pred['label'])} </div> """ results_html += "</div></div>" results_html += f""" <div class='result-box'> <h3>Fraktur Lokalisation</h3> <img src="{result_image_b64}" alt="Analyzed image"> </div> </div> <a href="/" class="button back-button"> ← Zurück <div class="button-progress"></div> </a> </div> </body> </html> """ return results_html except Exception as e: return f""" <!DOCTYPE html> <html> <head> <title>Fehler</title> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <style> {COMMON_STYLES} .error-box {{ background: #fee2e2; border: 1px solid #ef4444; padding: 20px; border-radius: 8px; margin: 20px 0; }} </style> </head> <body> <div class="container"> <div class="error-box"> <h3>Fehler</h3> <p>{str(e)}</p> </div> <a href="/" class="button back-button"> ← Zurück <div class="button-progress"></div> </a> </div> </body> </html> """ if __name__ == "__main__": uvicorn.run(app, host="0.0.0.0", port=7860)