bfd_report_gen / app.py
ftx7go's picture
Create app.py
aec8e3c verified
raw
history blame
8.23 kB
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "-1" # Force TensorFlow to use CPU
import gradio as gr
import numpy as np
from PIL import Image
from reportlab.lib.pagesizes import letter
from reportlab.pdfgen import canvas
from reportlab.lib import colors
from reportlab.platypus import Table, TableStyle
import requests
import smtplib
from email.mime.multipart import MIMEMultipart
from email.mime.text import MIMEText
from email.mime.base import MIMEBase
from email import encoders
import io
import base64
# FastAPI server URL
FASTAPI_URL = "http://localhost:7860/analyze" # Adjust if your FastAPI server is running elsewhere
# Email credentials
SENDER_EMAIL = "[email protected]"
SENDER_PASSWORD = "1w3r5y7i9pW$"
# Read HTML content from `re.html`
with open("templates/re.html", "r", encoding="utf-8") as file:
html_content = file.read()
# List of sample images
sample_images = [f"samples/{img}" for img in os.listdir("samples") if img.endswith((".png", ".jpg", ".jpeg"))]
def image_to_base64(image_path):
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode('utf-8')
# Function to process X-ray and generate a PDF report
def generate_report(name, age, gender, weight, height, allergies, cause, xray, email):
image_size = (224, 224)
# Send X-ray to FastAPI for analysis
try:
with open(xray, 'rb') as f:
files = {'file': (os.path.basename(xray), f)}
response = requests.post(FASTAPI_URL, files=files)
response.raise_for_status() # Raise an exception for bad status codes
fastapi_results_html = response.text
except requests.exceptions.RequestException as e:
return f"Error connecting to FastAPI server: {e}"
# Extract prediction from FastAPI response (you might need to adjust this based on the exact HTML structure)
diagnosed_class = "normal"
severity = "Not Available"
try:
# Simple string matching for now - improve this if the HTML structure is complex
if "KnochenWächter" in fastapi_results_html:
if "Kein Knochenbruch" in fastapi_results_html:
diagnosed_class = "normal"
elif "Knochenbruch" in fastapi_results_html or "Auffällig" in fastapi_results_html:
diagnosed_class = "Fractured"
if diagnosed_class == "Fractured":
if "score-high" in fastapi_results_html:
severity = "Severe"
elif "score-medium" in fastapi_results_html:
severity = "Moderate"
else:
severity = "Mild"
else:
severity = "Mild" # Assuming normal is mild
except Exception as e:
print(f"Error parsing FastAPI response: {e}")
# Treatment details table
treatment_data = [
["Severity Level", "Recommended Treatment", "Recovery Duration"],
["Mild", "Rest, pain relievers, and follow-up X-ray", "4-6 weeks"],
["Moderate", "Plaster cast, minor surgery if needed", "6-10 weeks"],
["Severe", "Major surgery, metal implants, physiotherapy", "Several months"]
]
# Estimated cost & duration table
cost_duration_data = [
["Hospital Type", "Estimated Cost", "Recovery Time"],
["Government Hospital", f"₹{2000 if severity == 'Mild' else 8000 if severity == 'Moderate' else 20000} - ₹{5000 if severity == 'Mild' else 15000 if severity == 'Moderate' else 50000}", "4-12 weeks"],
["Private Hospital", f"₹{10000 if severity == 'Mild' else 30000 if severity == 'Moderate' else 100000}+", "6 weeks - Several months"]
]
# Save X-ray image for report
img = Image.open(xray).resize((300, 300))
img_path = f"{name}_xray.png"
img.save(img_path)
# Generate PDF report
report_path = f"{name}_fracture_report.pdf"
c = canvas.Canvas(report_path, pagesize=letter)
# Report title
c.setFont("Helvetica-Bold", 16)
c.drawString(200, 770, "Bone Fracture Detection Report")
# Patient details table
patient_data = [
["Patient Name", name],
["Age", age],
["Gender", gender],
["Weight", f"{weight} kg"],
["Height", f"{height} cm"],
["Allergies", allergies if allergies else "None"],
["Cause of Injury", cause if cause else "Not Provided"],
["Diagnosis", diagnosed_class],
["Injury Severity", severity]
]
# Format and align tables
def format_table(data):
table = Table(data, colWidths=[270, 270]) # Set 90% width
table.setStyle(TableStyle([
('BACKGROUND', (0, 0), (-1, 0), colors.darkblue),
('TEXTCOLOR', (0, 0), (-1, 0), colors.whitesmoke),
('ALIGN', (0, 0), (-1, -1), 'CENTER'),
('FONTNAME', (0, 0), (-1, 0), 'Helvetica-Bold'),
('BOTTOMPADDING', (0, 0), (-1, 0), 12),
('GRID', (0, 0), (-1, -1), 1, colors.black),
('VALIGN', (0, 0), (-1, -1), 'MIDDLE')
]))
return table
# Draw patient details table
patient_table = format_table(patient_data)
patient_table.wrapOn(c, 480, 500)
patient_table.drawOn(c, 50, 620)
# Load and insert X-ray image
c.drawInlineImage(img_path, 50, 320, width=250, height=250)
c.setFont("Helvetica-Bold", 12)
c.drawString(120, 290, f"Fractured: {'Yes' if diagnosed_class == 'Fractured' else 'No'}")
# Draw treatment and cost tables
treatment_table = format_table(treatment_data)
treatment_table.wrapOn(c, 480, 200)
treatment_table.drawOn(c, 50, 200)
cost_table = format_table(cost_duration_data)
cost_table.wrapOn(c, 480, 150)
cost_table.drawOn(c, 50, 80)
c.save()
# Send email with the report
subject = "Bone Fracture Detection Report"
body = f"Dear {name},\n\nPlease find attached your bone fracture detection report.\n\nSincerely,\nYour Bone Fracture Detection System"
msg = MIMEMultipart()
msg['From'] = SENDER_EMAIL
msg['To'] = email
msg['Subject'] = subject
msg.attach(MIMEText(body))
with open(report_path, "rb") as attachment:
part = MIMEBase('application', "octet-stream")
part.set_payload(attachment.read())
encoders.encode_base64(part)
part.add_header('Content-Disposition', f"attachment; filename= {os.path.basename(report_path)}")
msg.attach(part)
try:
with smtplib.SMTP_SSL('smtp.gmail.com', 465) as server:
server.login(SENDER_EMAIL, SENDER_PASSWORD)
server.sendmail(SENDER_EMAIL, email, msg.as_string())
print(f"Report sent successfully to {email}")
return report_path # Return path for auto-download
except Exception as e:
return f"Error sending email: {e}"
# Function to select a sample image
def use_sample_image(sample_image_path):
return sample_image_path # Returns selected sample image filepath
# Define Gradio Interface
with gr.Blocks() as app:
gr.HTML(html_content) # Display `re.html` content in Gradio
gr.Markdown("## Bone Fracture Detection System")
with gr.Row():
name = gr.Textbox(label="Patient Name")
age = gr.Number(label="Age")
gender = gr.Radio(["Male", "Female", "Other"], label="Gender")
with gr.Row():
weight = gr.Number(label="Weight (kg)")
height = gr.Number(label="Height (cm)")
with gr.Row():
allergies = gr.Textbox(label="Allergies (if any)")
cause = gr.Textbox(label="Cause of Injury")
with gr.Row():
xray = gr.Image(type="filepath", label="Upload X-ray Image")
with gr.Row():
sample_selector = gr.Dropdown(choices=sample_images, label="Use Sample Image")
select_button = gr.Button("Load Sample Image")
email = gr.Textbox(label="Patient Email Address")
submit_button = gr.Button("Generate Report and Send Email")
output_file = gr.File(label="Download Report")
select_button.click(use_sample_image, inputs=[sample_selector], outputs=[xray])
submit_button.click(
generate_report,
inputs=[name, age, gender, weight, height, allergies, cause, xray, email],
outputs=[output_file],
)
# Launch the Gradio app
if __name__ == "__main__":
app.launch()