fschwartzer commited on
Commit
c6a4668
·
verified ·
1 Parent(s): 41debeb

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -5
app.py CHANGED
@@ -2,7 +2,8 @@ import streamlit as st
2
  import pandas as pd
3
  import torch
4
  from transformers import pipeline
5
- from transformers import TapasTokenizer, TapexTokenizer, BartForConditionalGeneration
 
6
  import datetime
7
 
8
  #df = pd.read_excel('discrepantes.xlsx', index_col='Unnamed: 0')
@@ -14,10 +15,13 @@ print(table_data.head())
14
  def response(user_question, table_data):
15
  a = datetime.datetime.now()
16
 
17
- model_name = "microsoft/tapex-large-finetuned-wtq"
18
- model = BartForConditionalGeneration.from_pretrained(model_name)
19
- tokenizer = TapexTokenizer.from_pretrained(model_name)
20
-
 
 
 
21
  queries = [user_question]
22
 
23
  encoding = tokenizer(table=table_data, query=queries, padding=True, return_tensors="pt", truncation=True)
 
2
  import pandas as pd
3
  import torch
4
  from transformers import pipeline
5
+ #from transformers import TapasTokenizer, TapexTokenizer, BartForConditionalGeneration
6
+ from transformers import AutoTokenizer, AutoModelForTableQuestionAnswering
7
  import datetime
8
 
9
  #df = pd.read_excel('discrepantes.xlsx', index_col='Unnamed: 0')
 
15
  def response(user_question, table_data):
16
  a = datetime.datetime.now()
17
 
18
+ #model_name = "microsoft/tapex-large-finetuned-wtq"
19
+ model_name = ""google/tapas-base-finetuned-wtq""
20
+ #model = BartForConditionalGeneration.from_pretrained(model_name)
21
+ model = AutoModelForTableQuestionAnswering.from_pretrained(model_name)
22
+ #tokenizer = TapexTokenizer.from_pretrained(model_name)
23
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
24
+
25
  queries = [user_question]
26
 
27
  encoding = tokenizer(table=table_data, query=queries, padding=True, return_tensors="pt", truncation=True)