Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -2,7 +2,8 @@ import streamlit as st
|
|
2 |
import pandas as pd
|
3 |
import torch
|
4 |
from transformers import pipeline
|
5 |
-
from transformers import TapasTokenizer, TapexTokenizer, BartForConditionalGeneration
|
|
|
6 |
import datetime
|
7 |
|
8 |
#df = pd.read_excel('discrepantes.xlsx', index_col='Unnamed: 0')
|
@@ -14,10 +15,13 @@ print(table_data.head())
|
|
14 |
def response(user_question, table_data):
|
15 |
a = datetime.datetime.now()
|
16 |
|
17 |
-
model_name = "microsoft/tapex-large-finetuned-wtq"
|
18 |
-
|
19 |
-
|
20 |
-
|
|
|
|
|
|
|
21 |
queries = [user_question]
|
22 |
|
23 |
encoding = tokenizer(table=table_data, query=queries, padding=True, return_tensors="pt", truncation=True)
|
|
|
2 |
import pandas as pd
|
3 |
import torch
|
4 |
from transformers import pipeline
|
5 |
+
#from transformers import TapasTokenizer, TapexTokenizer, BartForConditionalGeneration
|
6 |
+
from transformers import AutoTokenizer, AutoModelForTableQuestionAnswering
|
7 |
import datetime
|
8 |
|
9 |
#df = pd.read_excel('discrepantes.xlsx', index_col='Unnamed: 0')
|
|
|
15 |
def response(user_question, table_data):
|
16 |
a = datetime.datetime.now()
|
17 |
|
18 |
+
#model_name = "microsoft/tapex-large-finetuned-wtq"
|
19 |
+
model_name = ""google/tapas-base-finetuned-wtq""
|
20 |
+
#model = BartForConditionalGeneration.from_pretrained(model_name)
|
21 |
+
model = AutoModelForTableQuestionAnswering.from_pretrained(model_name)
|
22 |
+
#tokenizer = TapexTokenizer.from_pretrained(model_name)
|
23 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
24 |
+
|
25 |
queries = [user_question]
|
26 |
|
27 |
encoding = tokenizer(table=table_data, query=queries, padding=True, return_tensors="pt", truncation=True)
|