Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,23 +1,20 @@
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
import torch
|
4 |
-
from transformers import TapasConfig, TapasForQuestionAnswering
|
5 |
from transformers import pipeline
|
6 |
import datetime
|
7 |
|
8 |
# Load the data
|
9 |
df = pd.read_excel('discrepantes.xlsx')
|
10 |
df.fillna(0, inplace=True)
|
11 |
-
table_data = df.astype(str)
|
12 |
-
print(table_data.head())
|
13 |
|
14 |
# Function to generate a response using the TAPEX model
|
15 |
def response(user_question, table_data):
|
16 |
a = datetime.datetime.now()
|
17 |
|
18 |
-
model = TapasForQuestionAnswering.from_pretrained("google/tapas-base")
|
19 |
tqa = pipeline(task="table-question-answering", model="google/tapas-large-finetuned-wtq")
|
20 |
-
answer = tqa(table=
|
|
|
21 |
query_result = {
|
22 |
"Resposta": answer
|
23 |
}
|
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
import torch
|
|
|
4 |
from transformers import pipeline
|
5 |
import datetime
|
6 |
|
7 |
# Load the data
|
8 |
df = pd.read_excel('discrepantes.xlsx')
|
9 |
df.fillna(0, inplace=True)
|
|
|
|
|
10 |
|
11 |
# Function to generate a response using the TAPEX model
|
12 |
def response(user_question, table_data):
|
13 |
a = datetime.datetime.now()
|
14 |
|
|
|
15 |
tqa = pipeline(task="table-question-answering", model="google/tapas-large-finetuned-wtq")
|
16 |
+
answer = tqa(table=table, query=question)['cells'][0]
|
17 |
+
|
18 |
query_result = {
|
19 |
"Resposta": answer
|
20 |
}
|