Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,15 +3,20 @@ import pandas as pd
|
|
| 3 |
import torch
|
| 4 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 5 |
|
| 6 |
-
# Load the tokenizer
|
| 7 |
-
model_name = "
|
| 8 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 9 |
|
| 10 |
-
#
|
| 11 |
-
model = AutoModelForCausalLM.from_pretrained(model_name
|
| 12 |
|
| 13 |
-
#
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
model = model.to(device)
|
| 16 |
|
| 17 |
# Set the padding token to the end-of-sequence token
|
|
|
|
| 3 |
import torch
|
| 4 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 5 |
|
| 6 |
+
# Load the tokenizer
|
| 7 |
+
model_name = "your-llama-model" # Replace with the LLaMA model name
|
| 8 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 9 |
|
| 10 |
+
# Load the model
|
| 11 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
| 12 |
|
| 13 |
+
# Apply dynamic quantization for CPU
|
| 14 |
+
model = torch.quantization.quantize_dynamic(
|
| 15 |
+
model, {torch.nn.Linear}, dtype=torch.qint8
|
| 16 |
+
)
|
| 17 |
+
|
| 18 |
+
# Move model to CPU
|
| 19 |
+
device = torch.device("cpu")
|
| 20 |
model = model.to(device)
|
| 21 |
|
| 22 |
# Set the padding token to the end-of-sequence token
|