fschwartzer commited on
Commit
378a4bc
·
verified ·
1 Parent(s): 3f82507

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +83 -11
app.py CHANGED
@@ -68,20 +68,92 @@ def load_data(uploaded_file):
68
  return df
69
 
70
  def preprocess_data(df):
71
- # Implementar as etapas de pré-processamento aqui
72
- return df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73
 
74
- def apply_prophet(df):
75
- # Implementar o modelo Prophet aqui
76
- return df
77
-
78
  # Interface para carregar arquivo
79
  uploaded_file = st.file_uploader("Carregue um arquivo CSV ou XLSX", type=['csv', 'xlsx'])
80
- if uploaded_file and 'all_anomalies' not in st.session_state:
81
- df = load_data(uploaded_file)
82
- df = preprocess_data(df)
83
- all_anomalies = apply_prophet(df)
84
- st.session_state['all_anomalies'] = all_anomalies
 
 
 
85
 
86
  # Interface para perguntas do usuário
87
  user_question = st.text_input("Escreva sua questão aqui:", "")
 
68
  return df
69
 
70
  def preprocess_data(df):
71
+ if uploaded_file.name.endswith('.csv'):
72
+ df = pd.read_csv(uploaded_file, quotechar='"', encoding='utf-8')
73
+ elif uploaded_file.name.endswith('.xlsx'):
74
+ df = pd.read_excel(uploaded_file)
75
+
76
+ # Data preprocessing for Prophet
77
+ new_df = df.iloc[2:, 9:-1].fillna(0)
78
+ new_df.columns = df.iloc[1, 9:-1]
79
+ new_df.columns = new_df.columns.str.replace(r" \(\d+\)", "", regex=True)
80
+
81
+ month_dict = {
82
+ 'Jan': '01', 'Fev': '02', 'Mar': '03', 'Abr': '04',
83
+ 'Mai': '05', 'Jun': '06', 'Jul': '07', 'Ago': '08',
84
+ 'Set': '09', 'Out': '10', 'Nov': '11', 'Dez': '12'
85
+ }
86
+
87
+ def convert_column_name(column_name):
88
+ if column_name == 'Rótulos de Linha':
89
+ return column_name
90
+ parts = column_name.split('/')
91
+ month = parts[0].strip()
92
+ year = parts[1].strip()
93
+ year = ''.join(filter(str.isdigit, year))
94
+ month_number = month_dict.get(month, '00')
95
+ return f"{month_number}/{year}"
96
+
97
+ new_df.columns = [convert_column_name(col) for col in new_df.columns]
98
+ new_df.columns = pd.to_datetime(new_df.columns, errors='coerce')
99
+ new_df.rename(columns={new_df.columns[0]: 'Rotulo'}, inplace=True)
100
+ df_clean = new_df.copy()
101
+ return df_clean
102
+
103
+ def apply_prophet(df_clean):
104
+ # Criar um DataFrame vazio para armazenar todas as anomalias
105
+ all_anomalies = pd.DataFrame()
106
+
107
+ # Processar cada linha no DataFrame
108
+ for index, row in df_clean.iterrows():
109
+ data = pd.DataFrame({
110
+ 'ds': [col for col in df_clean.columns if isinstance(col, pd.Timestamp)],
111
+ 'y': row[[isinstance(col, pd.Timestamp) for col in df_clean.columns]].values
112
+ })
113
+
114
+ data = data[data['y'] > 0].reset_index(drop=True)
115
+ if data.empty or len(data) < 2:
116
+ print(f"Pulando grupo {row['Rotulo']} porque há menos de 2 observações não nulas.")
117
+ continue
118
+
119
+ try:
120
+ model = Prophet(interval_width=0.95)
121
+ model.fit(data)
122
+ except ValueError as e:
123
+ print(f"Pulando grupo {row['Rotulo']} devido a erro: {e}")
124
+ continue
125
+
126
+ future = model.make_future_dataframe(periods=12, freq='M')
127
+ forecast = model.predict(future)
128
+
129
+ num_real = len(data)
130
+ num_forecast = len(forecast)
131
+ real_values = list(data['y']) + [None] * (num_forecast - num_real)
132
+ forecast['real'] = real_values
133
+ anomalies = forecast[(forecast['real'] < forecast['yhat_lower']) | (forecast['real'] > forecast['yhat_upper'])]
134
+
135
+ anomalies['Group'] = row['Rotulo']
136
+ all_anomalies = pd.concat([all_anomalies, anomalies[['ds', 'real', 'Group']]], ignore_index=True)
137
+
138
+ # Renomear colunas e aplicar filtros
139
+ all_anomalies.rename(columns={"ds": "datetime", "real": "monetary value", "Group": "group"}, inplace=True)
140
+ all_anomalies = all_anomalies[all_anomalies['monetary value'].astype(float) >= 10000000.00]
141
+ all_anomalies['monetary value'] = all_anomalies['monetary value'].apply(lambda x: f"{x:.2f}")
142
+ all_anomalies.sort_values(by=['monetary value'], ascending=False, inplace=True)
143
+ all_anomalies = all_anomalies.fillna('').astype(str)
144
+
145
+ return all_anomalies
146
 
 
 
 
 
147
  # Interface para carregar arquivo
148
  uploaded_file = st.file_uploader("Carregue um arquivo CSV ou XLSX", type=['csv', 'xlsx'])
149
+ if uploaded_file:
150
+ if 'all_anomalies' not in st.session_state:
151
+ df = load_data(uploaded_file)
152
+ df = preprocess_data(df)
153
+ with st.spinner('Aplicando modelo de série temporal...'):
154
+ all_anomalies = apply_prophet(df)
155
+ st.session_state['all_anomalies'] = all_anomalies
156
+ st.session_state['all_anomalies'] = all_anomalies
157
 
158
  # Interface para perguntas do usuário
159
  user_question = st.text_input("Escreva sua questão aqui:", "")