Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,31 +3,38 @@ import pandas as pd
|
|
| 3 |
import torch
|
| 4 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 5 |
|
| 6 |
-
tokenizer
|
| 7 |
-
|
| 8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
# Set the padding token to the end-of-sequence token
|
| 11 |
if tokenizer.pad_token is None:
|
| 12 |
tokenizer.pad_token = tokenizer.eos_token
|
| 13 |
|
| 14 |
-
|
|
|
|
| 15 |
|
| 16 |
-
#
|
| 17 |
def response(question):
|
| 18 |
-
prompt = f"Considerando os dados: {df.to_string(index=False)}, onde 'ds' está em formato DateTime, 'real' é o valor da despesa e 'group' é o grupo da despesa. Pergunta: {question}"
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
input_ids = inputs['input_ids']
|
| 22 |
|
| 23 |
generated_ids = model.generate(
|
| 24 |
-
input_ids,
|
| 25 |
-
attention_mask=attention_mask,
|
| 26 |
-
max_length=
|
| 27 |
temperature=0.7,
|
| 28 |
top_p=0.9,
|
| 29 |
no_repeat_ngram_size=2,
|
| 30 |
-
num_beams=3,
|
| 31 |
)
|
| 32 |
|
| 33 |
generated_text = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
|
|
@@ -35,7 +42,7 @@ def response(question):
|
|
| 35 |
|
| 36 |
return final_response
|
| 37 |
|
| 38 |
-
#
|
| 39 |
st.markdown("""
|
| 40 |
<div style='display: flex; align-items: center;'>
|
| 41 |
<div style='width: 40px; height: 40px; background-color: green; border-radius: 50%; margin-right: 5px;'></div>
|
|
@@ -45,30 +52,30 @@ st.markdown("""
|
|
| 45 |
</div>
|
| 46 |
""", unsafe_allow_html=True)
|
| 47 |
|
| 48 |
-
#
|
| 49 |
if 'history' not in st.session_state:
|
| 50 |
st.session_state['history'] = []
|
| 51 |
|
| 52 |
-
#
|
| 53 |
user_question = st.text_input("Escreva sua questão aqui:", "")
|
| 54 |
|
| 55 |
if user_question:
|
| 56 |
-
#
|
| 57 |
st.session_state['history'].append(('👤', user_question))
|
| 58 |
st.markdown(f"**👤 {user_question}**")
|
| 59 |
|
| 60 |
-
#
|
| 61 |
bot_response = response(user_question)
|
| 62 |
|
| 63 |
-
#
|
| 64 |
st.session_state['history'].append(('🤖', bot_response))
|
| 65 |
st.markdown(f"<div style='text-align: right'>**🤖 {bot_response}**</div>", unsafe_allow_html=True)
|
| 66 |
|
| 67 |
-
#
|
| 68 |
if st.button("Limpar"):
|
| 69 |
st.session_state['history'] = []
|
| 70 |
|
| 71 |
-
#
|
| 72 |
for sender, message in st.session_state['history']:
|
| 73 |
if sender == '👤':
|
| 74 |
st.markdown(f"**👤 {message}**")
|
|
|
|
| 3 |
import torch
|
| 4 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 5 |
|
| 6 |
+
# Load the tokenizer and quantized model
|
| 7 |
+
model_name = "meta-llama/Meta-Llama-3.1-8B"
|
| 8 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 9 |
+
|
| 10 |
+
# Use bitsandbytes to load the model in 8-bit precision
|
| 11 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, load_in_8bit=True, device_map='auto')
|
| 12 |
+
|
| 13 |
+
# Move model to the appropriate device (GPU/CPU)
|
| 14 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 15 |
+
model = model.to(device)
|
| 16 |
|
| 17 |
# Set the padding token to the end-of-sequence token
|
| 18 |
if tokenizer.pad_token is None:
|
| 19 |
tokenizer.pad_token = tokenizer.eos_token
|
| 20 |
|
| 21 |
+
# Load the anomalies data
|
| 22 |
+
df = pd.read_csv('anomalies.csv', sep=',', decimal='.')
|
| 23 |
|
| 24 |
+
# Function to generate a response
|
| 25 |
def response(question):
|
| 26 |
+
prompt = f"Considerando os dados: {df.to_string(index=False)}, onde a coluna 'ds' está em formato DateTime, a coluna 'real' é o valor da despesa e a coluna 'group' é o grupo da despesa. Pergunta: {question}"
|
| 27 |
+
|
| 28 |
+
inputs = tokenizer(prompt, return_tensors='pt', padding='max_length', truncation=True, max_length=256).to(device)
|
|
|
|
| 29 |
|
| 30 |
generated_ids = model.generate(
|
| 31 |
+
inputs['input_ids'],
|
| 32 |
+
attention_mask=inputs['attention_mask'],
|
| 33 |
+
max_length=inputs['input_ids'].shape[1] + 50,
|
| 34 |
temperature=0.7,
|
| 35 |
top_p=0.9,
|
| 36 |
no_repeat_ngram_size=2,
|
| 37 |
+
num_beams=3,
|
| 38 |
)
|
| 39 |
|
| 40 |
generated_text = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
|
|
|
|
| 42 |
|
| 43 |
return final_response
|
| 44 |
|
| 45 |
+
# Streamlit interface
|
| 46 |
st.markdown("""
|
| 47 |
<div style='display: flex; align-items: center;'>
|
| 48 |
<div style='width: 40px; height: 40px; background-color: green; border-radius: 50%; margin-right: 5px;'></div>
|
|
|
|
| 52 |
</div>
|
| 53 |
""", unsafe_allow_html=True)
|
| 54 |
|
| 55 |
+
# Chat history
|
| 56 |
if 'history' not in st.session_state:
|
| 57 |
st.session_state['history'] = []
|
| 58 |
|
| 59 |
+
# Input box for user question
|
| 60 |
user_question = st.text_input("Escreva sua questão aqui:", "")
|
| 61 |
|
| 62 |
if user_question:
|
| 63 |
+
# Add person emoji when typing question
|
| 64 |
st.session_state['history'].append(('👤', user_question))
|
| 65 |
st.markdown(f"**👤 {user_question}**")
|
| 66 |
|
| 67 |
+
# Generate the response
|
| 68 |
bot_response = response(user_question)
|
| 69 |
|
| 70 |
+
# Add robot emoji when generating response and align to the right
|
| 71 |
st.session_state['history'].append(('🤖', bot_response))
|
| 72 |
st.markdown(f"<div style='text-align: right'>**🤖 {bot_response}**</div>", unsafe_allow_html=True)
|
| 73 |
|
| 74 |
+
# Clear history button
|
| 75 |
if st.button("Limpar"):
|
| 76 |
st.session_state['history'] = []
|
| 77 |
|
| 78 |
+
# Display chat history
|
| 79 |
for sender, message in st.session_state['history']:
|
| 80 |
if sender == '👤':
|
| 81 |
st.markdown(f"**👤 {message}**")
|