Spaces:
Running
Running
import streamlit as st | |
import pandas as pd | |
from transformers import BartForConditionalGeneration, TapexTokenizer, T5ForConditionalGeneration, T5Tokenizer | |
from prophet import Prophet | |
# Abrindo e lendo o arquivo CSS | |
with open("style.css", "r") as css: | |
css_style = css.read() | |
# Markdown combinado com a importação da fonte e o HTML | |
html_content = f""" | |
<style> | |
{css_style} | |
@import url('https://fonts.googleapis.com/css2?family=Kanit:wght@700&display=swap'); | |
</style> | |
<div style='display: flex; flex-direction: column; align-items: flex-start;'> | |
<div style='display: flex; align-items: center;'> | |
<div style='width: 20px; height: 4px; background-color: green; margin-right: 1px;'></div> | |
<div style='width: 20px; height: 4px; background-color: red; margin-right: 1px;'></div> | |
<div style='width: 20px; height: 4px; background-color: yellow; margin-right: 20px;'></div> | |
<span style='font-size: 45px; font-weight: normal; font-family: "Kanit", sans-serif;'>NOSTRADAMUS</span> | |
</div> | |
<div style='text-align: left; width: 100%;'> | |
<span style='font-size: 20px; font-weight: normal; color: #333; font-family: "Kanit", sans-serif'> | |
Meta Prophet + Microsoft TAPEX</span> | |
</div> | |
</div> | |
""" | |
# Aplicar o markdown combinado no Streamlit | |
st.markdown(html_content, unsafe_allow_html=True) | |
# Inicialização de variáveis de estado | |
if 'all_anomalies' not in st.session_state: | |
st.session_state['all_anomalies'] = pd.DataFrame() | |
if 'history' not in st.session_state: | |
st.session_state['history'] = [] | |
# Carregar os modelos de tradução e TAPEX | |
pt_en_translator = T5ForConditionalGeneration.from_pretrained("unicamp-dl/translation-pt-en-t5") | |
en_pt_translator = T5ForConditionalGeneration.from_pretrained("unicamp-dl/translation-en-pt-t5") | |
tapex_model = BartForConditionalGeneration.from_pretrained("microsoft/tapex-large-finetuned-wtq") | |
tapex_tokenizer = TapexTokenizer.from_pretrained("microsoft/tapex-large-finetuned-wtq") | |
tokenizer = T5Tokenizer.from_pretrained("unicamp-dl/translation-pt-en-t5") | |
def translate(text, model, tokenizer, source_lang="pt", target_lang="en"): | |
input_ids = tokenizer.encode(text, return_tensors="pt", add_special_tokens=True) | |
outputs = model.generate(input_ids) | |
translated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return translated_text | |
def response(user_question, table_data): | |
question_en = translate(user_question, pt_en_translator, tokenizer, source_lang="pt", target_lang="en") | |
encoding = tapex_tokenizer(table=table_data, query=[question_en], padding=True, return_tensors="pt", truncation=True) | |
outputs = tapex_model.generate(**encoding) | |
response_en = tapex_tokenizer.batch_decode(outputs, skip_special_tokens=True)[0] | |
response_pt = translate(response_en, en_pt_translator, tokenizer, source_lang="en", target_lang="pt") | |
return response_pt | |
def load_data(uploaded_file): | |
if uploaded_file.name.endswith('.csv'): | |
df = pd.read_csv(uploaded_file, quotechar='"', encoding='utf-8') | |
elif uploaded_file.name.endswith('.xlsx'): | |
df = pd.read_excel(uploaded_file) | |
return df | |
def preprocess_data(df): | |
# Implementar as etapas de pré-processamento aqui | |
return df | |
def apply_prophet(df_clean): | |
if df_clean.empty: | |
st.error("DataFrame está vazio após o pré-processamento.") | |
return pd.DataFrame() | |
# Criar um DataFrame vazio para armazenar todas as anomalias | |
all_anomalies = pd.DataFrame() | |
# Processar cada linha no DataFrame | |
for index, row in df_clean.iterrows(): | |
# Implementar o processamento com o modelo Prophet aqui | |
pass # Substituir pass pelo seu código real | |
# Renomear colunas e aplicar filtros | |
return all_anomalies | |
# Interface para carregar arquivo | |
uploaded_file = st.file_uploader("Carregue um arquivo CSV ou XLSX", type=['csv', 'xlsx']) | |
if uploaded_file: | |
df = load_data(uploaded_file) | |
df_clean = preprocess_data(df) | |
if df_clean.empty: | |
st.warning("Não há dados válidos para processar.") | |
else: | |
with st.spinner('Aplicando modelo de série temporal...'): | |
all_anomalies = apply_prophet(df_clean) | |
st.session_state['all_anomalies'] = all_anomalies | |
# Interface para perguntas do usuário | |
user_question = st.text_input("Escreva sua questão aqui:", "") | |
if user_question: | |
if 'all_anomalies' in st.session_state and not st.session_state['all_anomalies'].empty: | |
bot_response = response(user_question, st.session_state['all_anomalies']) | |
st.session_state['history'].append(('👤', user_question)) | |
st.session_state['history'].append(('🤖', bot_response)) | |
else: | |
st.warning("Ainda não há dados de anomalias para responder a pergunta.") | |
# Mostrar histórico de conversa | |
for sender, message in st.session_state['history']: | |
if sender == '👤': | |
st.markdown(f"**👤 {message}**") | |
elif sender == '🤖': | |
st.markdown(f"**🤖 {message}**", unsafe_allow_html=True) | |
# Botão para limpar histórico | |
if st.button("Limpar histórico"): | |
st.session_state['history'] = [] | |