Spaces:
Running
Running
import streamlit as st | |
import pandas as pd | |
import torch | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import os | |
os.system("!GIT_LFS_SKIP_SMUDGE=1 git clone https://huggingface.co/meta-llama/Llama-2-7b") | |
hf_token = os.getenv("HF_TOKEN") | |
token = os.getenv("HF_TOKEN") | |
# Load the tokenizer | |
model_name = "meta-llama/Llama-2-7b" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
# Load the model | |
model = AutoModelForCausalLM.from_pretrained(model_name) | |
# Apply dynamic quantization for CPU | |
model = torch.quantization.quantize_dynamic( | |
model, {torch.nn.Linear}, dtype=torch.qint8 | |
) | |
# Move model to CPU | |
device = torch.device("cpu") | |
model = model.to(device) | |
# Set the padding token to the end-of-sequence token | |
if tokenizer.pad_token is None: | |
tokenizer.pad_token = tokenizer.eos_token | |
# Load the anomalies data | |
df = pd.read_csv('anomalies.csv', sep=',', decimal='.') | |
# Function to generate a response | |
def response(question): | |
prompt = f"Considerando os dados: {df.to_string(index=False)}, onde a coluna 'ds' está em formato DateTime, a coluna 'real' é o valor da despesa e a coluna 'group' é o grupo da despesa. Pergunta: {question}" | |
inputs = tokenizer(prompt, return_tensors='pt', padding='max_length', truncation=True, max_length=256).to(device) | |
generated_ids = model.generate( | |
inputs['input_ids'], | |
attention_mask=inputs['attention_mask'], | |
max_length=inputs['input_ids'].shape[1] + 50, | |
temperature=0.7, | |
top_p=0.9, | |
no_repeat_ngram_size=2, | |
num_beams=3, | |
) | |
generated_text = tokenizer.decode(generated_ids[0], skip_special_tokens=True) | |
final_response = generated_text.split("Resposta:")[-1].split(".")[0] + "." | |
return final_response | |
# Streamlit interface | |
st.markdown(""" | |
<div style='display: flex; align-items: center;'> | |
<div style='width: 40px; height: 40px; background-color: green; border-radius: 50%; margin-right: 5px;'></div> | |
<div style='width: 40px; height: 40px; background-color: red; border-radius: 50%; margin-right: 5px;'></div> | |
<div style='width: 40px; height: 40px; background-color: yellow; border-radius: 50%; margin-right: 5px;'></div> | |
<span style='font-size: 40px; font-weight: bold;'>Chatbot do Tesouro RS</span> | |
</div> | |
""", unsafe_allow_html=True) | |
# Chat history | |
if 'history' not in st.session_state: | |
st.session_state['history'] = [] | |
# Input box for user question | |
user_question = st.text_input("Escreva sua questão aqui:", "") | |
if user_question: | |
# Add person emoji when typing question | |
st.session_state['history'].append(('👤', user_question)) | |
st.markdown(f"**👤 {user_question}**") | |
# Generate the response | |
bot_response = response(user_question) | |
# Add robot emoji when generating response and align to the right | |
st.session_state['history'].append(('🤖', bot_response)) | |
st.markdown(f"<div style='text-align: right'>**🤖 {bot_response}**</div>", unsafe_allow_html=True) | |
# Clear history button | |
if st.button("Limpar"): | |
st.session_state['history'] = [] | |
# Display chat history | |
for sender, message in st.session_state['history']: | |
if sender == '👤': | |
st.markdown(f"**👤 {message}**") | |
elif sender == '🤖': | |
st.markdown(f"<div style='text-align: right'>**🤖 {message}**</div>", unsafe_allow_html=True) | |