fschwartzer's picture
Update app.py
b13ea5d verified
raw
history blame
3.17 kB
import streamlit as st
import pandas as pd
import torch
from transformers import pipeline
#from transformers import TapasTokenizer, TapexTokenizer, BartForConditionalGeneration
from transformers import AutoTokenizer, AutoModelForTableQuestionAnswering
import datetime
#df = pd.read_excel('discrepantes.xlsx', index_col='Unnamed: 0')
df = pd.read_excel('discrepantes.xlsx')
df.fillna(0, inplace=True)
table_data = df.astype(str)
print(table_data.head())
def response(user_question, table_data):
a = datetime.datetime.now()
model_name = "google/tapas-base-finetuned-wtq"
model = AutoModelForTableQuestionAnswering.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
# The query should be passed as a list
encoding = tokenizer(table=table_data, queries=[user_question], padding=True, return_tensors="pt", truncation=True)
# Instead of using generate, we pass the encoding through the model to get the logits
outputs = model(**encoding)
# Extract the answer coordinates
predicted_answer_coordinates = outputs.logits.argmax(-1)
# Decode the answer from the table using the coordinates
answer = tokenizer.convert_logits_to_predictions(
encoding.data,
predicted_answer_coordinates
)
# Process the answer into a readable format
answer_text = answer[0][0][0] if len(answer[0]) > 0 else "Não foi possível encontrar uma resposta"
query_result = {
"Resposta": answer_text
}
b = datetime.datetime.now()
print(b - a)
return query_result
# Streamlit interface
st.markdown("""
<div style='display: flex; align-items: center;'>
<div style='width: 40px; height: 40px; background-color: green; border-radius: 50%; margin-right: 5px;'></div>
<div style='width: 40px; height: 40px; background-color: red; border-radius: 50%; margin-right: 5px;'></div>
<div style='width: 40px; height: 40px; background-color: yellow; border-radius: 50%; margin-right: 5px;'></div>
<span style='font-size: 40px; font-weight: bold;'>Chatbot do Tesouro RS</span>
</div>
""", unsafe_allow_html=True)
# Chat history
if 'history' not in st.session_state:
st.session_state['history'] = []
# Input box for user question
user_question = st.text_input("Escreva sua questão aqui:", "")
if user_question:
# Add person emoji when typing question
st.session_state['history'].append(('👤', user_question))
st.markdown(f"**👤 {user_question}**")
# Generate the response
bot_response = response(user_question, table_data)
# Add robot emoji when generating response and align to the right
st.session_state['history'].append(('🤖', bot_response))
st.markdown(f"<div style='text-align: right'>**🤖 {bot_response}**</div>", unsafe_allow_html=True)
# Clear history button
if st.button("Limpar"):
st.session_state['history'] = []
# Display chat history
for sender, message in st.session_state['history']:
if sender == '👤':
st.markdown(f"**👤 {message}**")
elif sender == '🤖':
st.markdown(f"<div style='text-align: right'>**🤖 {message}**</div>", unsafe_allow_html=True)