Spaces:
Running
Running
import streamlit as st | |
import pandas as pd | |
import torch | |
from transformers import pipeline | |
#from transformers import TapasTokenizer, TapexTokenizer, BartForConditionalGeneration | |
from transformers import AutoTokenizer, AutoModelForTableQuestionAnswering | |
import datetime | |
#df = pd.read_excel('discrepantes.xlsx', index_col='Unnamed: 0') | |
df = pd.read_excel('discrepantes.xlsx') | |
df.fillna(0, inplace=True) | |
table_data = df.astype(str) | |
print(table_data.head()) | |
def response(user_question, table_data): | |
a = datetime.datetime.now() | |
model_name = "google/tapas-base-finetuned-wtq" | |
model = AutoModelForTableQuestionAnswering.from_pretrained(model_name) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
# The query should be passed as a list | |
encoding = tokenizer(table=table_data, queries=[user_question], padding=True, return_tensors="pt", truncation=True) | |
# Instead of using generate, we pass the encoding through the model to get the logits | |
outputs = model(**encoding) | |
# Extract the answer coordinates | |
predicted_answer_coordinates = outputs.logits.argmax(-1) | |
# Decode the answer from the table using the coordinates | |
answer = tokenizer.convert_logits_to_predictions( | |
encoding.data, | |
predicted_answer_coordinates | |
) | |
# Process the answer into a readable format | |
answer_text = answer[0][0][0] if len(answer[0]) > 0 else "Não foi possível encontrar uma resposta" | |
query_result = { | |
"Resposta": answer_text | |
} | |
b = datetime.datetime.now() | |
print(b - a) | |
return query_result | |
# Streamlit interface | |
st.markdown(""" | |
<div style='display: flex; align-items: center;'> | |
<div style='width: 40px; height: 40px; background-color: green; border-radius: 50%; margin-right: 5px;'></div> | |
<div style='width: 40px; height: 40px; background-color: red; border-radius: 50%; margin-right: 5px;'></div> | |
<div style='width: 40px; height: 40px; background-color: yellow; border-radius: 50%; margin-right: 5px;'></div> | |
<span style='font-size: 40px; font-weight: bold;'>Chatbot do Tesouro RS</span> | |
</div> | |
""", unsafe_allow_html=True) | |
# Chat history | |
if 'history' not in st.session_state: | |
st.session_state['history'] = [] | |
# Input box for user question | |
user_question = st.text_input("Escreva sua questão aqui:", "") | |
if user_question: | |
# Add person emoji when typing question | |
st.session_state['history'].append(('👤', user_question)) | |
st.markdown(f"**👤 {user_question}**") | |
# Generate the response | |
bot_response = response(user_question, table_data) | |
# Add robot emoji when generating response and align to the right | |
st.session_state['history'].append(('🤖', bot_response)) | |
st.markdown(f"<div style='text-align: right'>**🤖 {bot_response}**</div>", unsafe_allow_html=True) | |
# Clear history button | |
if st.button("Limpar"): | |
st.session_state['history'] = [] | |
# Display chat history | |
for sender, message in st.session_state['history']: | |
if sender == '👤': | |
st.markdown(f"**👤 {message}**") | |
elif sender == '🤖': | |
st.markdown(f"<div style='text-align: right'>**🤖 {message}**</div>", unsafe_allow_html=True) | |