Spaces:
Running
Running
import streamlit as st | |
import pandas as pd | |
import torch | |
from transformers import pipeline | |
import datetime | |
from rapidfuzz import process, fuzz | |
# Load the CSV file | |
df = pd.read_csv("anomalies.csv", quotechar='"') | |
# Convert 'real' column to standard float format and then to strings | |
df['real'] = df['real'].apply(lambda x: f"{x:.2f}") | |
# Fill NaN values and convert all columns to strings | |
df = df.fillna('').astype(str) | |
# Function to filter the DataFrame using RapidFuzz | |
def filter_dataframe(df, date_str, group_keyword, threshold=80): | |
# Apply fuzzy matching on the 'ds' (date) and 'Group' columns | |
date_matches = process.extract(date_str, df['ds'], scorer=fuzz.token_sort_ratio, limit=None) | |
group_matches = process.extract(group_keyword, df['Group'], scorer=fuzz.token_sort_ratio, limit=None) | |
# Get the indices that match both criteria | |
date_indices = {match[2] for match in date_matches if match[1] >= threshold} | |
group_indices = {match[2] for match in group_matches if match[1] >= threshold} | |
common_indices = list(date_indices & group_indices) | |
return df.iloc[common_indices] | |
# Function to generate a response using the TAPAS model | |
def response(user_question, df): | |
a = datetime.datetime.now() | |
# Extract date and group keywords from the user question | |
date_str = "December 2022" # Example; you'd extract this from the user question dynamically | |
group_keyword = "IPVA" | |
# Filter the DataFrame by date and group | |
subset_df = filter_dataframe(df, date_str, group_keyword) | |
# Check if the DataFrame is empty | |
if subset_df.empty: | |
return {"Resposta": "Desculpe, não há dados disponíveis para responder à sua pergunta."} | |
# Initialize the TAPAS model | |
tqa = pipeline(task="table-question-answering", model="google/tapas-large-finetuned-wtq", | |
tokenizer_kwargs={"clean_up_tokenization_spaces": False}) | |
# Debugging information | |
print("Filtered DataFrame shape:", subset_df.shape) | |
print("Filtered DataFrame head:\n", subset_df.head()) | |
print("User question:", user_question) | |
# Query the TAPAS model | |
try: | |
answer = tqa(table=subset_df, query=user_question)['answer'] | |
except ValueError as e: | |
print(f"Error: {e}") | |
answer = "Desculpe, ocorreu um erro ao processar sua pergunta." | |
query_result = { | |
"Resposta": answer | |
} | |
b = datetime.datetime.now() | |
print("Time taken:", b - a) | |
return query_result | |
# Streamlit interface | |
st.markdown(""" | |
<div style='display: flex; align-items: center;'> | |
<div style='width: 40px; height: 40px; background-color: green; border-radius: 50%; margin-right: 5px;'></div> | |
<div style='width: 40px; height: 40px; background-color: red; border-radius: 50%; margin-right: 5px;'></div> | |
<div style='width: 40px; height: 40px; background-color: yellow; border-radius: 50%; margin-right: 5px;'></div> | |
<span style='font-size: 40px; font-weight: bold;'>Chatbot do Tesouro RS</span> | |
</div> | |
""", unsafe_allow_html=True) | |
# Chat history | |
if 'history' not in st.session_state: | |
st.session_state['history'] = [] | |
# Input box for user question | |
user_question = st.text_input("Escreva sua questão aqui:", "") | |
if user_question: | |
# Add human emoji when user asks a question | |
st.session_state['history'].append(('👤', user_question)) | |
st.markdown(f"**👤 {user_question}**") | |
# Generate the response | |
bot_response = response(user_question, df)["Resposta"] | |
# Add robot emoji when generating response and align to the right | |
st.session_state['history'].append(('🤖', bot_response)) | |
st.markdown(f"<div style='text-align: right'>**🤖 {bot_response}**</div>", unsafe_allow_html=True) | |
# Clear history button | |
if st.button("Limpar"): | |
st.session_state['history'] = [] | |
# Display chat history | |
for sender, message in st.session_state['history']: | |
if sender == '👤': | |
st.markdown(f"**👤 {message}**") | |
elif sender == '🤖': | |
st.markdown(f"<div style='text-align: right'>**🤖 {message}**</div>", unsafe_allow_html=True) | |