fschwartzer's picture
Update app.py
91e5f2f verified
raw
history blame
4.07 kB
import streamlit as st
import pandas as pd
import torch
from transformers import pipeline
import datetime
from rapidfuzz import process, fuzz
# Load the CSV file
df = pd.read_csv("anomalies.csv", quotechar='"')
# Convert 'real' column to standard float format and then to strings
df['real'] = df['real'].apply(lambda x: f"{x:.2f}")
# Fill NaN values and convert all columns to strings
df = df.fillna('').astype(str)
# Function to filter the DataFrame using RapidFuzz
def filter_dataframe(df, date_str, group_keyword, threshold=80):
# Apply fuzzy matching on the 'ds' (date) and 'Group' columns
date_matches = process.extract(date_str, df['ds'], scorer=fuzz.token_sort_ratio, limit=None)
group_matches = process.extract(group_keyword, df['Group'], scorer=fuzz.token_sort_ratio, limit=None)
# Get the indices that match both criteria
date_indices = {match[2] for match in date_matches if match[1] >= threshold}
group_indices = {match[2] for match in group_matches if match[1] >= threshold}
common_indices = list(date_indices & group_indices)
return df.iloc[common_indices]
# Function to generate a response using the TAPAS model
def response(user_question, df):
a = datetime.datetime.now()
# Extract date and group keywords from the user question
date_str = "December 2022" # Example; you'd extract this from the user question dynamically
group_keyword = "IPVA"
# Filter the DataFrame by date and group
subset_df = filter_dataframe(df, date_str, group_keyword)
# Check if the DataFrame is empty
if subset_df.empty:
return {"Resposta": "Desculpe, não há dados disponíveis para responder à sua pergunta."}
# Initialize the TAPAS model
tqa = pipeline(task="table-question-answering", model="google/tapas-large-finetuned-wtq",
tokenizer_kwargs={"clean_up_tokenization_spaces": False})
# Debugging information
print("Filtered DataFrame shape:", subset_df.shape)
print("Filtered DataFrame head:\n", subset_df.head())
print("User question:", user_question)
# Query the TAPAS model
try:
answer = tqa(table=subset_df, query=user_question)['answer']
except ValueError as e:
print(f"Error: {e}")
answer = "Desculpe, ocorreu um erro ao processar sua pergunta."
query_result = {
"Resposta": answer
}
b = datetime.datetime.now()
print("Time taken:", b - a)
return query_result
# Streamlit interface
st.markdown("""
<div style='display: flex; align-items: center;'>
<div style='width: 40px; height: 40px; background-color: green; border-radius: 50%; margin-right: 5px;'></div>
<div style='width: 40px; height: 40px; background-color: red; border-radius: 50%; margin-right: 5px;'></div>
<div style='width: 40px; height: 40px; background-color: yellow; border-radius: 50%; margin-right: 5px;'></div>
<span style='font-size: 40px; font-weight: bold;'>Chatbot do Tesouro RS</span>
</div>
""", unsafe_allow_html=True)
# Chat history
if 'history' not in st.session_state:
st.session_state['history'] = []
# Input box for user question
user_question = st.text_input("Escreva sua questão aqui:", "")
if user_question:
# Add human emoji when user asks a question
st.session_state['history'].append(('👤', user_question))
st.markdown(f"**👤 {user_question}**")
# Generate the response
bot_response = response(user_question, df)["Resposta"]
# Add robot emoji when generating response and align to the right
st.session_state['history'].append(('🤖', bot_response))
st.markdown(f"<div style='text-align: right'>**🤖 {bot_response}**</div>", unsafe_allow_html=True)
# Clear history button
if st.button("Limpar"):
st.session_state['history'] = []
# Display chat history
for sender, message in st.session_state['history']:
if sender == '👤':
st.markdown(f"**👤 {message}**")
elif sender == '🤖':
st.markdown(f"<div style='text-align: right'>**🤖 {message}**</div>", unsafe_allow_html=True)