File size: 4,006 Bytes
03d6e86
 
 
 
 
caea1f5
03d6e86
bafee93
57c5821
49124ad
de6d203
57c5821
49124ad
57c5821
5f82549
 
caea1f5
 
 
 
 
 
 
 
 
 
 
 
 
b1a6dfa
de6d203
048e2e2
03d6e86
 
caea1f5
 
 
 
 
 
 
bafee93
57c5821
b1a6dfa
 
5f82549
57c5821
caea1f5
 
5f82549
 
57c5821
b1a6dfa
bafee93
b1a6dfa
 
 
 
03d6e86
 
 
 
 
57c5821
03d6e86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9adca6f
03d6e86
 
 
 
 
 
 
 
 
 
 
 
 
 
57c5821
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
import streamlit as st
import pandas as pd
import torch
from transformers import pipeline
import datetime
from rapidfuzz import process, fuzz

# Load the CSV file
df = pd.read_csv("anomalies.csv", quotechar='"')

# Convert 'real' column to standard float format and then to strings
df['real'] = df['real'].apply(lambda x: f"{x:.2f}")

# Fill NaN values and convert all columns to strings
df = df.fillna('').astype(str)

# Function to filter the DataFrame using RapidFuzz for dates
def filter_dataframe_by_date(df, date_str, threshold=80):
    # Apply fuzzy matching on the 'ds' (date) column
    matches = process.extract(date_str, df['ds'], scorer=fuzz.token_sort_ratio, limit=None)
    filtered_rows = [match[2] for match in matches if match[1] >= threshold]
    return df.iloc[filtered_rows]

# Function to filter the DataFrame using RapidFuzz for groups
def filter_dataframe_by_group(df, group_keyword, threshold=80):
    # Apply fuzzy matching on the 'Group' column
    matches = process.extract(group_keyword, df['Group'], scorer=fuzz.token_sort_ratio, limit=None)
    filtered_rows = [match[2] for match in matches if match[1] >= threshold]
    return df.iloc[filtered_rows]

# Function to generate a response using the TAPAS model
def response(user_question, df):
    a = datetime.datetime.now()

    # Extract date and group keywords from the user question
    date_str = "December 2022"  # Example; you'd extract this from the user question
    group_keyword = "IPVA"

    # Filter the DataFrame by date and group
    subset_df = filter_dataframe_by_date(df, date_str)
    subset_df = filter_dataframe_by_group(subset_df, group_keyword)

    # Initialize the TAPAS model
    tqa = pipeline(task="table-question-answering", model="google/tapas-large-finetuned-wtq", 
                   tokenizer_kwargs={"clean_up_tokenization_spaces": False})

    # Debugging information
    print("Filtered DataFrame shape:", subset_df.shape)
    print("Filtered DataFrame head:\n", subset_df.head())
    print("User question:", user_question)

    # Query the TAPAS model
    try:
        answer = tqa(table=subset_df, query=user_question)['answer']
    except IndexError as e:
        print(f"Error: {e}")
        answer = "Error occurred: " + str(e)
    
    query_result = {
        "Resposta": answer
    }

    b = datetime.datetime.now()
    print("Time taken:", b - a)

    return query_result

# Streamlit interface
st.markdown("""
<div style='display: flex; align-items: center;'>
    <div style='width: 40px; height: 40px; background-color: green; border-radius: 50%; margin-right: 5px;'></div>
    <div style='width: 40px; height: 40px; background-color: red; border-radius: 50%; margin-right: 5px;'></div>
    <div style='width: 40px; height: 40px; background-color: yellow; border-radius: 50%; margin-right: 5px;'></div>
    <span style='font-size: 40px; font-weight: bold;'>Chatbot do Tesouro RS</span>
</div>
""", unsafe_allow_html=True)

# Chat history
if 'history' not in st.session_state:
    st.session_state['history'] = []

# Input box for user question
user_question = st.text_input("Escreva sua questão aqui:", "")

if user_question:
    # Add human emoji when user asks a question
    st.session_state['history'].append(('👤', user_question))
    st.markdown(f"**👤 {user_question}**")
    
    # Generate the response
    bot_response = response(user_question, df)["Resposta"]
    
    # Add robot emoji when generating response and align to the right
    st.session_state['history'].append(('🤖', bot_response))
    st.markdown(f"<div style='text-align: right'>**🤖 {bot_response}**</div>", unsafe_allow_html=True)

# Clear history button
if st.button("Limpar"):
    st.session_state['history'] = []

# Display chat history
for sender, message in st.session_state['history']:
    if sender == '👤':
        st.markdown(f"**👤 {message}**")
    elif sender == '🤖':
        st.markdown(f"<div style='text-align: right'>**🤖 {message}**</div>", unsafe_allow_html=True)