Spaces:
Running
Running
File size: 4,006 Bytes
03d6e86 caea1f5 03d6e86 bafee93 57c5821 49124ad de6d203 57c5821 49124ad 57c5821 5f82549 caea1f5 b1a6dfa de6d203 048e2e2 03d6e86 caea1f5 bafee93 57c5821 b1a6dfa 5f82549 57c5821 caea1f5 5f82549 57c5821 b1a6dfa bafee93 b1a6dfa 03d6e86 57c5821 03d6e86 9adca6f 03d6e86 57c5821 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 |
import streamlit as st
import pandas as pd
import torch
from transformers import pipeline
import datetime
from rapidfuzz import process, fuzz
# Load the CSV file
df = pd.read_csv("anomalies.csv", quotechar='"')
# Convert 'real' column to standard float format and then to strings
df['real'] = df['real'].apply(lambda x: f"{x:.2f}")
# Fill NaN values and convert all columns to strings
df = df.fillna('').astype(str)
# Function to filter the DataFrame using RapidFuzz for dates
def filter_dataframe_by_date(df, date_str, threshold=80):
# Apply fuzzy matching on the 'ds' (date) column
matches = process.extract(date_str, df['ds'], scorer=fuzz.token_sort_ratio, limit=None)
filtered_rows = [match[2] for match in matches if match[1] >= threshold]
return df.iloc[filtered_rows]
# Function to filter the DataFrame using RapidFuzz for groups
def filter_dataframe_by_group(df, group_keyword, threshold=80):
# Apply fuzzy matching on the 'Group' column
matches = process.extract(group_keyword, df['Group'], scorer=fuzz.token_sort_ratio, limit=None)
filtered_rows = [match[2] for match in matches if match[1] >= threshold]
return df.iloc[filtered_rows]
# Function to generate a response using the TAPAS model
def response(user_question, df):
a = datetime.datetime.now()
# Extract date and group keywords from the user question
date_str = "December 2022" # Example; you'd extract this from the user question
group_keyword = "IPVA"
# Filter the DataFrame by date and group
subset_df = filter_dataframe_by_date(df, date_str)
subset_df = filter_dataframe_by_group(subset_df, group_keyword)
# Initialize the TAPAS model
tqa = pipeline(task="table-question-answering", model="google/tapas-large-finetuned-wtq",
tokenizer_kwargs={"clean_up_tokenization_spaces": False})
# Debugging information
print("Filtered DataFrame shape:", subset_df.shape)
print("Filtered DataFrame head:\n", subset_df.head())
print("User question:", user_question)
# Query the TAPAS model
try:
answer = tqa(table=subset_df, query=user_question)['answer']
except IndexError as e:
print(f"Error: {e}")
answer = "Error occurred: " + str(e)
query_result = {
"Resposta": answer
}
b = datetime.datetime.now()
print("Time taken:", b - a)
return query_result
# Streamlit interface
st.markdown("""
<div style='display: flex; align-items: center;'>
<div style='width: 40px; height: 40px; background-color: green; border-radius: 50%; margin-right: 5px;'></div>
<div style='width: 40px; height: 40px; background-color: red; border-radius: 50%; margin-right: 5px;'></div>
<div style='width: 40px; height: 40px; background-color: yellow; border-radius: 50%; margin-right: 5px;'></div>
<span style='font-size: 40px; font-weight: bold;'>Chatbot do Tesouro RS</span>
</div>
""", unsafe_allow_html=True)
# Chat history
if 'history' not in st.session_state:
st.session_state['history'] = []
# Input box for user question
user_question = st.text_input("Escreva sua questão aqui:", "")
if user_question:
# Add human emoji when user asks a question
st.session_state['history'].append(('👤', user_question))
st.markdown(f"**👤 {user_question}**")
# Generate the response
bot_response = response(user_question, df)["Resposta"]
# Add robot emoji when generating response and align to the right
st.session_state['history'].append(('🤖', bot_response))
st.markdown(f"<div style='text-align: right'>**🤖 {bot_response}**</div>", unsafe_allow_html=True)
# Clear history button
if st.button("Limpar"):
st.session_state['history'] = []
# Display chat history
for sender, message in st.session_state['history']:
if sender == '👤':
st.markdown(f"**👤 {message}**")
elif sender == '🤖':
st.markdown(f"<div style='text-align: right'>**🤖 {message}**</div>", unsafe_allow_html=True)
|