Spaces:
Running
Running
File size: 4,441 Bytes
e2af017 96bff79 e2af017 e727bfc 63c894a e727bfc 535c2d9 63c894a 535c2d9 a16cb6b 52d4b2c f2de8aa 63c894a a16cb6b c8e42cd f2de8aa 96bff79 e727bfc 3f82507 525bf5b c8e42cd 525bf5b c8e42cd 525bf5b c8e42cd 525bf5b c8e42cd 525bf5b 3f82507 525bf5b c8e42cd 525bf5b c8e42cd 525bf5b c8e42cd 525bf5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 |
import streamlit as st
import pandas as pd
from transformers import BartForConditionalGeneration, TapexTokenizer, T5ForConditionalGeneration, T5Tokenizer
from prophet import Prophet
# Caminho para o arquivo CSS, ajuste conforme a estrutura do seu projeto
css_file = "style.css"
# Abrindo e lendo o arquivo CSS
with open(css_file, "r") as css:
css_style = css.read()
# Markdown combinado com a importação da fonte e o HTML
html_content = f"""
<style>
{css_style}
@import url('https://fonts.googleapis.com/css2?family=Kanit:wght@700&display=swap');
</style>
<div style='display: flex; flex-direction: column; align-items: flex-start;'>
<div style='display: flex; align-items: center;'>
<div style='width: 20px; height: 40px; background-color: green; margin-right: 1px;'></div>
<div style='width: 20px; height: 40px; background-color: red; margin-right: 1px;'></div>
<div style='width: 20px; height: 40px; background-color: yellow; margin-right: 20px;'></div>
<span style='font-size: 50px; font-weight: normal; font-family: "Kanit", sans-serif;'>NOSTRADAMUS</span>
</div>
<div style='text-align: left; width: 100%;'>
<span style='font-size: 20px; font-weight: normal; color: #333; font-family: "Kanit", sans-serif'>
Meta Prophet + Microsoft TAPEX</span>
</div>
</div>
"""
# Aplicar o markdown combinado no Streamlit
st.markdown(html_content, unsafe_allow_html=True)
# Inicialização de variáveis de estado
if 'all_anomalies' not in st.session_state:
st.session_state['all_anomalies'] = pd.DataFrame()
if 'history' not in st.session_state:
st.session_state['history'] = []
# Carregar os modelos de tradução e TAPEX
pt_en_translator = T5ForConditionalGeneration.from_pretrained("unicamp-dl/translation-pt-en-t5")
en_pt_translator = T5ForConditionalGeneration.from_pretrained("unicamp-dl/translation-en-pt-t5")
tapex_model = BartForConditionalGeneration.from_pretrained("microsoft/tapex-large-finetuned-wtq")
tapex_tokenizer = TapexTokenizer.from_pretrained("microsoft/tapex-large-finetuned-wtq")
tokenizer = T5Tokenizer.from_pretrained("unicamp-dl/translation-pt-en-t5")
def translate(text, model, tokenizer, source_lang="pt", target_lang="en"):
input_ids = tokenizer.encode(text, return_tensors="pt", add_special_tokens=True)
outputs = model.generate(input_ids)
translated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
return translated_text
def response(user_question, table_data):
question_en = translate(user_question, pt_en_translator, tokenizer, source_lang="pt", target_lang="en")
encoding = tapex_tokenizer(table=table_data, query=[question_en], padding=True, return_tensors="pt", truncation=True)
outputs = tapex_model.generate(**encoding)
response_en = tapex_tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
response_pt = translate(response_en, en_pt_translator, tokenizer, source_lang="en", target_lang="pt")
return response_pt
def load_data(uploaded_file):
if uploaded_file.name.endswith('.csv'):
df = pd.read_csv(uploaded_file, quotechar='"', encoding='utf-8')
elif uploaded_file.name.endswith('.xlsx'):
df = pd.read_excel(uploaded_file)
return df
def preprocess_data(df):
# Implementar as etapas de pré-processamento aqui
return df
def apply_prophet(df):
# Implementar o modelo Prophet aqui
return df
# Interface para carregar arquivo
uploaded_file = st.file_uploader("Carregue um arquivo CSV ou XLSX", type=['csv', 'xlsx'])
if uploaded_file and 'all_anomalies' not in st.session_state:
df = load_data(uploaded_file)
df = preprocess_data(df)
all_anomalies = apply_prophet(df)
st.session_state['all_anomalies'] = all_anomalies
# Interface para perguntas do usuário
user_question = st.text_input("Escreva sua questão aqui:", "")
if user_question:
bot_response = response(user_question, st.session_state['all_anomalies'])
st.session_state['history'].append(('👤', user_question))
st.session_state['history'].append(('🤖', bot_response))
# Mostrar histórico de conversa
for sender, message in st.session_state['history']:
if sender == '👤':
st.markdown(f"**👤 {message}**")
elif sender == '🤖':
st.markdown(f"**🤖 {message}**", unsafe_allow_html=True)
# Botão para limpar histórico
if st.button("Limpar histórico"):
st.session_state['history'] = [] |