File size: 4,441 Bytes
e2af017
 
 
96bff79
e2af017
e727bfc
 
 
 
 
 
 
 
 
63c894a
e727bfc
535c2d9
63c894a
535c2d9
 
a16cb6b
 
 
52d4b2c
f2de8aa
63c894a
a16cb6b
c8e42cd
f2de8aa
96bff79
e727bfc
 
 
 
 
3f82507
 
 
 
 
 
525bf5b
c8e42cd
 
 
 
525bf5b
c8e42cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
525bf5b
 
 
 
 
 
c8e42cd
525bf5b
 
 
c8e42cd
525bf5b
 
 
3f82507
525bf5b
 
 
 
 
 
 
 
 
 
c8e42cd
 
525bf5b
c8e42cd
 
525bf5b
c8e42cd
 
 
 
525bf5b
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import streamlit as st
import pandas as pd
from transformers import BartForConditionalGeneration, TapexTokenizer, T5ForConditionalGeneration, T5Tokenizer
from prophet import Prophet

# Caminho para o arquivo CSS, ajuste conforme a estrutura do seu projeto
css_file = "style.css"

# Abrindo e lendo o arquivo CSS
with open(css_file, "r") as css:
    css_style = css.read()

# Markdown combinado com a importação da fonte e o HTML
html_content = f"""
<style>
{css_style}
@import url('https://fonts.googleapis.com/css2?family=Kanit:wght@700&display=swap');
</style>
<div style='display: flex; flex-direction: column; align-items: flex-start;'>
    <div style='display: flex; align-items: center;'>
        <div style='width: 20px; height: 40px; background-color: green; margin-right: 1px;'></div>
        <div style='width: 20px; height: 40px; background-color: red; margin-right: 1px;'></div>
        <div style='width: 20px; height: 40px; background-color: yellow; margin-right: 20px;'></div>
        <span style='font-size: 50px; font-weight: normal; font-family: "Kanit", sans-serif;'>NOSTRADAMUS</span>
    </div>
    <div style='text-align: left; width: 100%;'>
        <span style='font-size: 20px; font-weight: normal; color: #333; font-family: "Kanit", sans-serif'>
        Meta Prophet + Microsoft TAPEX</span>
    </div>
</div>
"""

# Aplicar o markdown combinado no Streamlit
st.markdown(html_content, unsafe_allow_html=True)

# Inicialização de variáveis de estado
if 'all_anomalies' not in st.session_state:
    st.session_state['all_anomalies'] = pd.DataFrame()
if 'history' not in st.session_state:
    st.session_state['history'] = []

# Carregar os modelos de tradução e TAPEX
pt_en_translator = T5ForConditionalGeneration.from_pretrained("unicamp-dl/translation-pt-en-t5")
en_pt_translator = T5ForConditionalGeneration.from_pretrained("unicamp-dl/translation-en-pt-t5")
tapex_model = BartForConditionalGeneration.from_pretrained("microsoft/tapex-large-finetuned-wtq")
tapex_tokenizer = TapexTokenizer.from_pretrained("microsoft/tapex-large-finetuned-wtq")
tokenizer = T5Tokenizer.from_pretrained("unicamp-dl/translation-pt-en-t5")

def translate(text, model, tokenizer, source_lang="pt", target_lang="en"):
    input_ids = tokenizer.encode(text, return_tensors="pt", add_special_tokens=True)
    outputs = model.generate(input_ids)
    translated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
    return translated_text

def response(user_question, table_data):
    question_en = translate(user_question, pt_en_translator, tokenizer, source_lang="pt", target_lang="en")
    encoding = tapex_tokenizer(table=table_data, query=[question_en], padding=True, return_tensors="pt", truncation=True)
    outputs = tapex_model.generate(**encoding)
    response_en = tapex_tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
    response_pt = translate(response_en, en_pt_translator, tokenizer, source_lang="en", target_lang="pt")
    return response_pt

def load_data(uploaded_file):
    if uploaded_file.name.endswith('.csv'):
        df = pd.read_csv(uploaded_file, quotechar='"', encoding='utf-8')
    elif uploaded_file.name.endswith('.xlsx'):
        df = pd.read_excel(uploaded_file)
    return df

def preprocess_data(df):
    # Implementar as etapas de pré-processamento aqui
    return df

def apply_prophet(df):
    # Implementar o modelo Prophet aqui
    return df
    
# Interface para carregar arquivo
uploaded_file = st.file_uploader("Carregue um arquivo CSV ou XLSX", type=['csv', 'xlsx'])
if uploaded_file and 'all_anomalies' not in st.session_state:
    df = load_data(uploaded_file)
    df = preprocess_data(df)
    all_anomalies = apply_prophet(df)
    st.session_state['all_anomalies'] = all_anomalies

# Interface para perguntas do usuário
user_question = st.text_input("Escreva sua questão aqui:", "")
if user_question:
    bot_response = response(user_question, st.session_state['all_anomalies'])
    st.session_state['history'].append(('👤', user_question))
    st.session_state['history'].append(('🤖', bot_response))

# Mostrar histórico de conversa
for sender, message in st.session_state['history']:
    if sender == '👤':
        st.markdown(f"**👤 {message}**")
    elif sender == '🤖':
        st.markdown(f"**🤖 {message}**", unsafe_allow_html=True)

# Botão para limpar histórico
if st.button("Limpar histórico"):
    st.session_state['history'] = []