text-ypesk2 / tasks /text.py
ypesk's picture
Update tasks/text.py
5414c47 verified
raw
history blame
5.38 kB
from fastapi import APIRouter
from datetime import datetime
from datasets import load_dataset
from sklearn.metrics import accuracy_score
import random
from .utils.evaluation import TextEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info
router = APIRouter()
DESCRIPTION = "First Baseline"
ROUTE = "/text"
@router.post(ROUTE, tags=["Text Task"],
description=DESCRIPTION)
async def evaluate_text(request: TextEvaluationRequest):
"""
Evaluate text classification for climate disinformation detection.
Current Model: Random Baseline
- Makes random predictions from the label space (0-7)
- Used as a baseline for comparison
"""
# Get space info
username, space_url = get_space_info()
# Define the label mapping
LABEL_MAPPING = {
"0_not_relevant": 0,
"1_not_happening": 1,
"2_not_human": 2,
"3_not_bad": 3,
"4_solutions_harmful_unnecessary": 4,
"5_science_unreliable": 5,
"6_proponents_biased": 6,
"7_fossil_fuels_needed": 7
}
# Load and prepare the dataset
dataset = load_dataset(request.dataset_name)
# Convert string labels to integers
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})
# Split dataset
train_test = dataset["train"]
test_dataset = dataset["test"]
# Start tracking emissions
tracker.start()
tracker.start_task("inference")
#--------------------------------------------------------------------------------------------
# YOUR MODEL INFERENCE CODE HERE
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
#--------------------------------------------------------------------------------------------
class CovidTwitterBertClassifier(nn.Module):
def __init__(self, n_classes):
super().__init__()
self.n_classes = n_classes
self.bert = BertForPreTraining.from_pretrained('digitalepidemiologylab/covid-twitter-bert-v2')
self.bert.cls.seq_relationship = nn.Linear(1024, n_classes)
self.sigmoid = nn.Sigmoid()
def forward(self, input_ids, token_type_ids, input_mask):
outputs = self.bert(input_ids = input_ids, token_type_ids = token_type_ids, attention_mask = input_mask)
logits = outputs[1]
return logits
model = CovidTwitterBertClassifier(8)
model.to(device)
model.load_state_dict(torch.load('model.pth'))
model.eval()
tokenizer = AutoTokenizer.from_pretrained('digitalepidemiologylab/covid-twitter-bert')
test_texts = [t['quote'] for t in data_test]
MAX_LEN = 128 #1024 # < m some tweets will be truncated
tokenized_test = tokenizer(test_texts, max_length=MAX_LEN, padding='max_length', truncation=True)
test_input_ids, test_token_type_ids, test_attention_mask = tokenized_test['input_ids'], tokenized_test['token_type_ids'], tokenized_test['attention_mask']
test_token_type_ids = torch.tensor(test_token_type_ids)
test_input_ids = torch.tensor(test_input_ids)
test_attention_mask = torch.tensor(test_attention_mask)
batch_size = 8 #
test_data = TensorDataset(test_input_ids, test_attention_mask, test_token_type_ids)
test_sampler = SequentialSampler(test_data)
test_dataloader = DataLoader(test_data, sampler=test_sampler, batch_size=batch_size)
predictions = []
for step, batch in enumerate(test_dataloader):
# Add batch to GPU
batch = tuple(t.to(device) for t in batch)
b_input_ids, b_input_mask, b_token_type_ids = batch
with torch.no_grad():
logits = model(b_input_ids, b_token_type_ids, b_input_mask)
logits = logits.detach().cpu().numpy()
predictions.extend(logits.argmax(1))
for l in ground_truth:
labels_sep.append(l)
true_labels = test_dataset["label"]
# Make random predictions (placeholder for actual model inference)
#true_labels = test_dataset["label"]
#predictions = [random.randint(0, 7) for _ in range(len(true_labels))]
#--------------------------------------------------------------------------------------------
# YOUR MODEL INFERENCE STOPS HERE
#--------------------------------------------------------------------------------------------
# Stop tracking emissions
emissions_data = tracker.stop_task()
# Calculate accuracy
accuracy = accuracy_score(true_labels, predictions)
# Prepare results dictionary
results = {
"username": username,
"space_url": space_url,
"submission_timestamp": datetime.now().isoformat(),
"model_description": DESCRIPTION,
"accuracy": float(accuracy),
"energy_consumed_wh": emissions_data.energy_consumed * 1000,
"emissions_gco2eq": emissions_data.emissions * 1000,
"emissions_data": clean_emissions_data(emissions_data),
"api_route": ROUTE,
"dataset_config": {
"dataset_name": request.dataset_name,
"test_size": request.test_size,
"test_seed": request.test_seed
}
}
return results